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Abstract— This paper presents a new reinforcement learn-
ing algorithm named Short Term Model-based learning
(STM-Q) able to learn quickly to control stochastic systems.
Our objective is to control the positioning of small mechanical
parts with a micromanipulation system for microfactory
applications. The micropositioning platform is made of three
linear actuators that move points to push the object toward
a goal position. At the micrometric scale, it is really difficult
to model the behaviour of manipulated objects. Moreover,
due to the gap between real world and discrete world
perceived by the camera, the motion of parts can be seen
as a little stochastic. To overcome these problems and design
an automated device, we use reinforcement learning methods
and develop a new model-based algorithm taking into account
the stochastic behaviour of the positioning task.

Index Terms— real robot learning, reinforcement learning,
model-based algorithm, microrobotics.

I. INTRODUCTION

Positioning is a basic function in industrial production,
for example for machining or assembly. For microrobotic
applications, some works [1][2] have shown that for
micropositionning, pushing an object can be used instead
of pick-and-place to reduce mechanical difficulties. Many
works use the cantilever of an atomic force microscope
to push and position particules [3][4]. Huang [5] presents
another solution for fine positioning of macroscopic
objects, made of three linear actuators, that use tapping as
way of displacement. Zyvex company proposes a similar
device using four points, intended for pushing particules
under scanning electron microscopes. In most cases, these
devices are manually operated.

We are interested in the positioning of small mechanical
parts, between a hundred of microns and a few millimeters.
For this purpose, we build a manipulation device made of
three precise linear actuators that push the object (cf. Fig.
1). The aim of our works is to get a completely automated
device. But in small dimensions, the classic mechanical
equations, based on the friction forces and on the weight of
objects, are not suitable anymore because of the importance
taken by the adhesion forces [6]. In fact, the problem which
consists in foreseeing the motion of a solid put on a plan
and undergoing a punctual push is an already complex
problem in larger dimensions [7]. As a consequence, we

Fig. 1. Micropositioning device

do not have a reliable model of the displacement of the
objects that we want to position. That is why we chose to
use a control method based on learning, which do not need
a model of the system.

Mahadevan [8] summarizes a number of possible ap-
proaches to perform learning on real robots. In our case,
the learning must be unsupervised because we don’t have
examples of good control policy to train the controller. So,
we chose to use reinforcement learning.

Mahadevan argues that robot learning is hard because of
sensor noise, stochastic actions, real-time response, on-line
learning, limited training time and situated representation
(partial observations of the state).

In our microrobotics application, the environment is well
controlled. Thanks to the CCD camera, the state of the
object is well and completely observable. But due to the
limited camera resolution, the pushing actions can be seen
by the controller as a little stochastic. Our second main
problem is the learning time. Basic reinforcement learning
algorithms take a long time to find a good control policy.
There are a lot of researches to improve their speed. We
focus here on works dealing with real robots.



To learn quicklier, one idea is to decompose the overall
task into several simpler behaviors. Each of these behaviors
is learned using a reinforcement learning algorithm. Ma-
hadevan and Connell [9], Asada [10], Laurent and Piat [11]
use this principle with success to learn real box-pushing
tasks and soccer tasks. In our case, we don’t have any idea
how to decompose the task.

Atkeson and Schaal [12] (inverted pendulum), Smart
[13] (corridor following) use human demonstration to speed
up the learning. In our case, the task takes a long time and
is dull. The aim is really to get an autonomous and flexible
controller that learn without any help from human.

Others solutions use approximation functions (neural
networks [14] , locally weighted regression [15]) or model-
based approach [16] [17]. The main interest of approxima-
tion functions is the generalization capability. Drawbacks
are that convergence guarantees toward an optimal control
policy are lost and that there are a lot of parameters to
tune.

The main interest of model-based algorithms is to do
off-line optimization of the control policy. So, the on-line
time can be reduced. The drawback is that the state space
must be small. In our case, due to the camera resolution,
the state space is small but the system is seen as stochastic.
Among model-based algorithms, the Sutton’s Dyna-Q
[18] can’t be used because it doesn’t work with stochastic
systems. Priority sweeping [19] can deal with stochastic
systems but require too much memory1.

For those reasons, we propose here a new reinforce-
ment learning algorithm called Short Term Model-based
reinforcement learning (STM-Q). This paper presents this
algorithm and the obtained results with both simulated and
real manipulation systems.

II. REINFORCEMENT LEARNING

A. General principle

In the reinforcement learning framework, the controller
has a finite set U of actions it can perform and the system
has a finite set X of states. At each step of learning, the
controller takes an action ut that leads the system from the
state xt to the new state xt+1. Then, it receives a reward
rt+1 from the system according to xt, ut and xt+1 (cf. Fig.
2). The objective of the control using learning consists in
seeking actions that maximize the long term sum of rewards
(return) given by:

G(t) =
∞∑

k=0

γkrt+k+1(xt+k, ut+k, xt+k+1) (1)

A learning is divided into episodes which are a set of
steps that end when the system reaches a final state called
absorbing state. Absorbing state can be either the state we

1About |X |×|U|×|X | values if X is the state space and U the action
space.

Fig. 2. Sensorimotor loop.

want the object to reach or a state from where the system
can not escape.

B. Q-Learning

Q-Learning [20], is one of the most used reinforcement
learning algorithm. It uses an array to store an evaluation
Q(x, u) of the expected return for each state-action couple
(x, u). At each step of learning, the evaluation of the state-
action couple (xt, ut) is updated using this equation:

Q(xt, ut)← Q(xt, ut)+
+ α[rt+1 + γ max

v
Q(xt+1, v)−Q(xt, ut)] (2)

The α coefficient is a step-size parameter that influences the
rate of learning, and the γ coefficient is the discount-rate
parameter and determines the importance of future rewards.

According to the expected return of each action, an algo-
rithm chooses the action with an exploration / exploitation
criteria. In this paper, we use the ε-greedy: with a small
probability ε, a random action is selected, otherwise, the
selected action is the one for which Q(x, u) is maximum.
This method allows to easy control the exploration rate.

At the end of the learning, the controller should have
learnt the optimal policy. So at each step, according to the
state of system, it just has to choose the action that has the
best estimation to follow the best control policy.

One of the main problem with Q-Learning is the time
needed to learn an optimal policy. To improve this aspect, it
is possible to use a model-based algorithm as the Dyna-Q.

C. Dyna-Q

Dyna-Q [18] is an evolution of the Q-Learning algorithm
in which a partial model is built during the learning. The
model is made of an array in which is saved, for each
state-action couple (x, u), the new state and the reward
obtained when the controller took the action u in the state
x last time.

At each learning step, after having updated the evaluation
of the state-action couple Q(xt, ut), the Q-values of several
other state-action couples are also updated using the model
(off-line optimization).



The main improvement of Dyna-Q over Q-Learning is
the reduction of the on-line time to learn the optimal policy,
which seems very convenient when learning to control a
real device.

But in Dyna-Q, the system must be deterministic. The
problem is that our system is not deterministic : each time
an action is taken in a given state, the system is not sure
to always reach the same new state, due to the sampling
of the real world made by the camera. So for our purpose,
Dyna-Q is not suitable.

D. Short-Term Model-based learning (STM-Q)

To solve both these problems - the very long learning
time and the fact that the system is not deterministic - we
propose a new algorithm named Short-Term Model—based
learning (STM-Q), which is presented in Fig. 3.

In the STM-Q, the memory stores a model M which
keeps a historical record of Mmax state—reward couples
(x′, r) for each state—action couple (x, u). These state—
rewards couples (x′, r) correspond to the state and the
reward obtained during the last passages where the con-
troller observed the state x and selected the action u. The
number Mmax of couples (x′, r) kept for the couples (x, u)
is called the memory size.

The model M(x, u) is a FIFO buffer which cardinal is
at most Mmax. If Mmax = 4, we have for example:

M(x, u) =
{
(x′t1 , rt1), (x

′
t2 , rt2), (x

′
t3 , rt3), (x

′
t4 , rt4)

}
(3)

with t1 > t2 > t3 > t4. Each couple (x′ti
, rti

) corresponds
to a past observation of the state and the reward obtained
when the controller did the action u while observing the
state x. The couples can be different if the system is not
deterministic.

The storage of a historical record for each couple allows
to calculate an estimate of the transition probability of
moving from state x to state x′ given that we have applied
action u. The maximum likelihood is given by:

p̂(x′|x, u) =
∑

∀(y,r)∈M(x,u)|y=x′

1
|M(x, u)| (4)

Using this estimation, the action-value function can be
optimized without using the learning-rate parameter α,
even in case the system is not deterministic. The update
equation for a couple (x, u) is then:

Q(x, u)←
∑

∀(y,r)∈M(x,u)

1
|M(x, u)|

[
r + γ max

v∈U
Q(y, v)

]
(5)

III. POSITIONING DEVICE

A. Positioning small parts

The objective is to fine position small mechanical
parts in a fully automatic way. This task is performed

Initialization:
∀(x, u) ∈ X × U , Q(x, u)← Q0, M(x, u)← ∅
H ← ∅
(H is the list of the state-action that have been seen at least once)

For each episode:
x←current state
While x is not an absorbing state do

u← ε-greedy(Q, x)
Take action u, observe new state x′ and reward r

If M(x, u) = ∅ then
(the (x, u) state-action couple is met for the first time)
H ← H ⊕ {(x, u)} (concatenation)

End if
If |M(x, u)| = Mmax then

Suppress the older observation in M(x, u)
End if
M(x, u)←M(x, u)⊕ {(x′, r)} (concatenation)
x← x′

For all (y, v) ∈ H do
(off-line optimization)

Q(y, v)← ∑
∀(y′,r)∈M(y,v)

1
|M(y,v)|

[
r + γ max

w∈U
Q(y′, w)

]
End for

End while

Fig. 3. STM-Q algorithm

Fig. 4. Top view of the micropositioning device

by three linear actuators that carries points. Each
actuator has only one degree of freedom: it can only go
forward and backward in order to push the part to position.

The object to be manipulated is brought to the manipu-
lation area by another robot with a coarse resolution. The
objective is that the work of the three points leads to the
good and fine positioning of the object (cf. Fig. 4).

To get an automated task we need a feedback to get the
position of the part. This feedback is done using vision
(cf. Fig. 5).

When the device learns to position the object, the points
can put the object in a position from where they can not
bring it back. To avoid this problem, we decided to put a
barrier around the working area that prevents the object to



Fig. 5. Large view of the micropositioning device

become unreachable. This barrier is a part of the system,
so it can be used by the point to position the object.

B. Device components

The actuators are Physik Instrumente Micro Translation
stages with a very high resolution, large range and conve-
nient use.

The points are optical fibers. Optical fibers are rigid
enough to push parts and offer interesting features. First
one is their flexibility: if a solid point try to push the part
when it is blocked by the barrier, it could break itself or
spoil the part. Instead, in this situation, the optical fiber will
bend. The second interesting feature is the transparency of
the optical fiber very useful for the vision feedback.

Indeed, we use a black and white CCD camera whose the
image is grabbed using a PC-type computer with a frame
grabber card. The scene is back-lighted up, so that the
object is well defined on the image. As the optical fibers,
the barrier is transparent, which makes them invisible by
the camera. That way, the camera only sees the part to
position, which is very helpful to analyse the images.

C. Reinforcement learning controller

In order to use our reinforcement learning controller, we
need to define the state space, the action space and the
rewards.

1) State space: To define states, it is necessary to be
able to characterize the position of the object. For that
purpose, we use a reference mark R(O,�i,�j) motionless for
the camera and a reference mark R′(O′, �i′, �j′) fixed to the
solid to be positioned (see Fig. 4). x and y, coordinates of
O′ in R, determine the position of the object. The object we
use is circular so we do not take into account its orientation.

We define the various states of the system by sampling
the space of the values which x and y can take. In fact,
we use the sampling made by the CCD sensor of the
camera so that a state of the object correspond to a pixel
of the grabbed image. There are about 3000 states in X .

2) Action space: we chose to use twice as many actions
as points, which means there are six actions in the U set.
When we execute one of the two actions relative to a
point, this one moves forward until it touches the object
and then pushes it on a length which was fixed at the
beginning. The only difference between the two actions is
the pushing length : each point can either perform a small
push to precisely move the object or a long push in order
to accelerate the positioning task. This kind of actions is
rather simple, but it is useful to limit the size of the action
space.

3) Reward: The reward function has to give a reward
after execution of the action ut when the system is in the
state xt. This reward can depend only on the new state
xt+1 or can take into account the initial state xt and even
the action ut itself.

In our case, we decided to attribute a reward equal to 1
if the new state of the object is the wanted position, 0 if
not. That way, we do not influence the learning.

IV. SIMULATION RESULTS

A. Simulated device

To test the controller in a fast and easy way, we devel-
oped a simulated device that can be used instead the real
one to perform a learning. This simulated device is built
using the characteristics of the real device. So it as the
same number of states, which are defined in the same way
and can perform the same actions. A simplistic mechanical
model allows to simulate the effect of pushing an object
by a point.

The used mechanical model is far from reflecting per-
fectly the reality, and farther from the reality of the
microworld. But it is useful here to allow a first validation
of our approach under simulation.

All simulated learning have been done 20 times. The
graphics shows the average curve of 20 learning.

B. Results

1) Influence of ε parameter: To study the influence of
the ε parameter over the learning process, we made sim-
ulations using several values. The results can be observed
on Fig. 6.

We can see that, whatever value of ε is taken, the
controller manages to learn to position the part. The
main difference is that, with a bigger value, once the
learning is made, more actions are needed to perform
the task. The reason is that the controller explores more
the state-command space: it more often chooses actions
randomly instead of using what has been learnt.

2) Influence of pushing length: Another parameter we
wanted to know the influence is the length L of a long
push. We know the short pushing has to stay small enough
to be able to reach the wanted position precisely but we
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Fig. 6. Effect of ε parameter on the simulated manipulation task (with
γ = 0.9)

long push number of steps for number of step for
length the first episode the 50th episode

0.2 83157 49
0.3 34348 57.3
0.4 1875.8 41.95
... ... ...
1 1551.8 36.35

Fig. 7. Effect of long pushing length on the simulated manipulation task
(γ = 0.9, ε = 0.1)

wanted to know what is the real avantage having a long
push.

For any value of L from 0.2 to 1 mm, if we wait long
enough, the controller will learn to position the device.
What change with the value of L is the duration of the
first episode. In Fig. 7 we represented the average number
of steps of the first learning episode for several values of
L. There is no much difference between a value of long
pushing length of 0.4 mm or 1 mm. But what is important
is that with a value under 0.4 mm, the first episode last
really long. In this case, if we observe the motion of the
part, we see that it stays in a small area close to the
barrier, being pushed alternatively by the three points. In
fact, the long push has to be long enough to allow to
quickly get out of this deadlock.

3) Comparison between STM, Q-Learning and Dyna-
Q: We finally used the simulated scene to compare the
efficiency of Q-Learning, Dyna-Q, and STM-Q algorithms.

As you can see on the Fig. 8, only Q-Learning and
STM-Q algorithms manage to learn an efficient policy.
As we supposed, the Dyna-Q can not deal with the non-
determinism of the device and then do not manage to
learn. So we can see that the STM-Q algorithm manages
to correct this aspect which prevents Dyna-Q to be used
on real device.
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Fig. 8. Comparison between STM-Q, Q-Learning and Dyna-Q on the
simulated manipulation task (with γ = 0.9, ε = 0.1)

Finally, we can also see that the STM-Q learning is
really faster than the one using Q-Learning, which shows
the interest of building a model during the learning.

V. EXPERIMENTAL RESULTS

A. First experimental results

At last, we have performed first tests on the real device.
You can see in Fig. 9 the curve of one real learning with
the same learning parameters as in simulation (γ = 0.9,
ε = 0.1) . It has to be noticed that this curve is not directly
comparable to the ones shown for the simulated device.
As we said above, the simulation curves show the average
of 20 learning, while this curve is the result of only one
learning. Indeed, the real learning took more than 24 hours.
So it is really too long to do average curves. Nevertheless, it
is obvious that the results are not as good as in simulation.
Yet, the controller managed to improve its control policy,
and it is an encouraging result.

B. Further look over the learnt policy

To see more easily what the controller learnt we have
drawn on Fig. 10, for each state x, the evaluation V (x) of
the learnt policy:

V (x) = max
v

Q(x, v) (6)

We can recognize the position of the three points (the
dotted lines on Fig. 10), because it is when the object is
on the way of a point that it is easier to position it. The
encircled areas correspond to states that have a high value
of V . The one encircled by the dotted circle shows the
states that are near to the wanted position. If the system
is in one of these states, only a few small pushes will be
necessary to achieve the positioning task. The three areas
encircled by the solid circles are more interesting : they
correspond to states that are far from the wanted position,
but that can lead the object quickly to this position after,
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Fig. 9. Learning on the real device (with γ = 0.9, ε = 0.1)

Fig. 10. Evaluation of the policy.

at least, one long push. This validates our choice to give
no reward to the state-action couples that bring the object
closer to the wanted position. The fastest way to achieve
the task is not always to go through the states which are
the nearest to the wanted position.

VI. CONCLUSIONS AND FURTHER WORKS

The results obtained on the simulated micropositioning
system show that the STM-Q algorithm leads to best results
in term of learning time compared to the Q-Learning.
Contrary to the Dyna-Q algorithm which does not work
with stochastic systems, the STM-Q algorithm converges
quickly with few additional memory requirements.

First tests on the real micropositioning system show that,
using the STM-Q Learning, the controller achieves to learn
a control policy. Further tests will be realized to confirm the
good results of the STM-Q algorithm on the real system.
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