
Control of planar micro-manipulator systems

using reinforcement learning

Guillaume Laurent, Emmanuel Piat

Laboratoire d’Automatique de Besançon - UMR CNRS 6596

25, rue Alain Savary, 25000 Besançon, France

E-mail : epiat@ens2m.fr, website : http://www.lab.ens2m.fr

This paper presents an application of reinforce-

ment learning to the control of a planar micro-

manipulator system. The manipulation station we

used is able to push small objects on a glass slide un-

der a camera. The objective is to automate complex

tasks of manipulations. Our approach is based on

reinforcement learning algorithm (Q-Learning) be-

cause the models of the manipulator and of the dy-

namics of objects are unknown. The system is too

complex for a classic algorithm, so we propose an

original architecture which realizes several parallel

learning processes. This method produces an almost

optimal policy whatever the number of manipulated

objects may be. Some simulations allowed us to op-

timize every parameter of the learning process. The

experimental tests show that the controller learns its

task very quickly.

1 Introduction

Our objective is to automate the control of a micro-
manipulation station able to push micro-objects on a
glass slide under a microscope. The station is consti-
tuted by a ferro-magnetic tool moved by a permanent
magnet set under the glass slide (cf. figure 1 and 2).
The magnet has two degrees of freedom : up/down and
left/right. Objects are set on the glass slide. For this
experiment, we used 3 mm plastic balls but the future
application would be able to move biological cells (about
10 µm). Another research team works on the minia-
turization of this manipulation station [1]. Above the
manipulator system, a video camera catch the complete
scene. The magnet is moved by two electric motors.
The motors are open loop controlled. There isn’t any
system to control the position of the magnet and the sys-
tem is very difficult to drive : great hysteresis between
the magnet and the tool, non-linearity, ...

Our purpose is to automate a pushing task. For ex-
ample, we wish the controller would be able to move
objects from a point to another one by pushing them
with the tool.

The dynamics of the block-pushing is not coarse and it
is difficult to model it [2]. The behaviors of the manip-
ulator system and of the micro-objects are unknown :

Figure 1: Micro and milli-manipulator systems.

no-linearity, hysteresis, adhesiveness, . . . The modeling
of these particular phenomena due to the microscopic
scale is even more difficult. So, it would be interest-
ing to use a controller which doesn’t require any model.
Furthermore, during a micro-manipulation process, the
only available information comes from the microscope.
So, we wish the controller would be able to work with
those inputs. Finally, the controller must manage suc-
cessive movements of objects and optimize a global func-
tion as the total time of manipulation for n objects.

The algorithms of reinforcement learning developed
in the 80s by Sutton [3] and Watkins [4] offer interest-
ing characteristics for the control of our manipulation
station. First, they allow to approach optimal control
without knowing the model of the system. The mod-
els of the block-pushing manipulation, of the manipula-
tor system, and of the manipulated micro-objects don’t
need to be known. Reinforcement learning provides a
way of programming by reward and punishment with-
out needing to specify how the task is to be achieved.
Furthermore, they guarantee the convergence towards
the global optimal command in Bellman’s sense. This
point is particularly interesting to minimize the manip-
ulation time.

Although reinforcement learning fits very nicely to
every system, it is a slow learning process. The main
reason is the size of the space of states to visit [5]. If

the dimension of the space is big, the time of learning
is very important. Quickly, the learning process takes
such a long time that an on-line learning is not possible.

The space of states of our application is large. In fact,
every object moves in a two dimensional space. If n
objects are considered, the space of states of the system
has 2n dimensions. A learning is very difficult in a so
big space. So, we propose an original architecture to
reduce this complexity.

This article contains three parts. The first is dedi-
cated to the description of the architecture of our con-
troller. The second presents simulations made to opti-
mize the algorithm. The last part describes experimen-
tal results obtained with the real manipulation station.

Camera

Camera view

Moving Permanent Magnet

ObjectTool

Glass Slide

Figure 2: Working plan.

2 Architecture of the controller

2.1 Q-Learning

Q-Learning is a reinforcement learning algorithm intro-
duced in 1989 by Watkins [4]. It is also described in the
Sutton’s book [6] and in the Kaebling’s paper [7].

The principle of the reinforcement learning is based
on learning by trials and errors. On each step of in-
teraction, the controller receives an input that provides
indications of the current state s of the system. Then,
the controller chooses an action a. This action changes
the state of the system and the controller receives a re-
ward rss′ according to the new state s

′. The controller’s
job is to find a policy π, mapping states to actions, that
maximizes the long-run sum of rewards. The conver-
gence of this algorithm towards the optimal policy π∗

was proved in 1992 by Watkins [8].

The choice of an action is based on the past experience
of the controller. A function Q(s, a) is used to memorize
the expected reward for the action a and the state s.
This function Q is called the action-value function. In
our case, the action-value function is a look-up table.

On each step of interaction, the action-value function

is updated with equation (1) :

Q(s, a)← Q(s, a)

+ α

[

rss′ + γmax
b

Q(s′, b)−Q(s, a)

]

(1)

with :

• s the old state of the system,

• s′ the new state of the system,

• a the chosen action in the state s,

• α a learning rate parameter,

• γ a discount rate parameter.

To choose an action in a state s, the controller
uses the action-value estimations Q(s, a) and an explo-
ration/exploitation strategy called σ. The selected ac-
tion is then :

a = σ(s,Q)

In our case, σ is the ε-greedy strategy : most of the
time, the greedy action is selected (the action for which
Q(s, a) is maximum) and sometimes, a random action
is selected with a small probability ε, independently of
the action-value estimations. This strategy allows us
to control exactly the exploration rate. To maintain a
constant exploration rate, we chose ε = 0.1 during the
tests. This parameter can be lowered when learning is
ended.
The policy π of the controller, mapping states to ac-

tions, is fully defined by the action-value function Q in
addition with the exploration/exploitation strategy σ

(i.e. π(s) = σ(s,Q)).
The Q-Learning algorithm suits very well to all small

state spaces. If the controller had to manipulate only
one object the state space would have only two dimen-
sions, so the learning would be possible. But, the con-
troller has to manage several objects. Every object
moves in a two dimensional space. It is necessary to
take into account all of possible configurations of all ob-
jects set on the glass slide. So, for N objects, the state
space has 2N dimensions and the traditional Q-learning
algorithm can’t work with a so large state space.

2.2 Our approach

The elementary hypothesis of our approach is to assume
that all the objects are the same. Each object moves
alike on the plane defined by the glass slide. So, if it was
alone, each object would generate the same action-value
function q. For this reason, we use the same action-value
function for all the objects. Several learning processes
are done at the same time with the same look-up table
q.
This method allows to reduce the complexity of the

system. Furthermore, the learning process may be sped
up because more backups will be done. As a general

Im
ag

e
P

ro
ce

ss
in

g

E
va

lu
at

io
n/

R
ei

nf
or

ce
m

en
t

M
ax

S
tr

at
eg

y
σ

1s

2s

...

...

ns

1(,)q s a

2(,)q s a

(,)nq s a

...

...
(,)Q S a a

Figure 3: Architecture of the controller.

rule, our approach allows to reduce the state space com-
plexity when several variables move in the same vecto-
rial space. For example, in our application, every object
moves in the same vectorial space defined by the glass
slide plane.
Every state si of an object i is defined by its position

in the plane. On each step of interaction, the action-
value function is updated using the Q-Learning equation
for every object :

q(si, a)← q(si, a)

+ α

[

rsis
′
i
+ γmax

b
q(s′i, b)− q(si, a)

]

Then, we define the global action-value function for the
global state S = {si,∀i} of the system by :

Q(S, a) = max
i

q(si, a)

This point will be discussed in the next section.
The strategy σ uses the global action-value function

Q to choose the action to perform.
The algorithm architecture is summarized on the fig-

ure 3. Every object is independently processed using the
same function q. At the end, the local action-values are
compared in order to evaluate the global action-value
function. The figure 4 presents the algorithm of our
controller.

Initialize the first state S = {si}
Repeat

Choose a using a← σ(S,Q)
Take action a
Observe the new state S′ = {s′i}
For all object i do

a∗ ← argmaxb q(s
′
i, b)

q(si, a)← q(si, a)
+α[rsis

′
i
+γq(s′i, a

∗)−q(si, a)]
S ← S′

Figure 4: Controller algorithm.

2.3 Theoretical approach

First case, the state space is S and all the rewards equal
zero except the reward r > 0 associated to the transi-

tX

1
(,) 1t goald X X −

0r >
2goalX

2
(,) 1t goald X X −

3
(,) 1t goald X X −

0r >

0r >
3goalX

1goalX

tx

(,) 1t goald x x −

1tx +

0r >

...1t dx + − goalx...

Figure 5: A path example in the state space S.

tions leading to the state xgoal (cf. figure 5).
If xt is the state of the system at the time t, the

optimal action-value function is defined by :

q∗(xt, a) = max
π

[∞
∑

k=0

γkrxt+kxt+k+1

]

where maxπ means that the policy which maximizes the
sum is chosen for the evaluation.
The system will reach the state xgoal, so the optimal

action-value function can be written as :

q∗(xt, a) = max
π

[

γ0rxtxt+1
+ γ1rxt+1xt+2

+ ...

...+ γd(xt,xgoal)−1rxt+d−1xgoal

+
∞
∑

k=d(xt,xgoal)

γkrxt+kxt+k+1

]

We called d(xt, xgoal) the number of transitions to go
from the state xt to the state xgoal. For all states except
xgoal, the reward equals zero, so :

q∗(xt, a) = max
π

[

γd(xt,xgoal)−1rxt+d−1xgoal

+ γd(xt,xgoal)
∞
∑

k=0

γkrxt+d+kxt+d+k+1

]

Using the Bellman’s principle, we get :

q∗(xt, a) = γd
∗(xt,xgoal)−1

(

rxt+d∗−1xgoal

+ γmax
π

∞
∑

k=0

γkrxt+d∗+kxt+d∗+k+1

)

i.e. :

q∗(xt, a) = γd
∗(xt,xgoal)−1

(

r

+ γq∗(xgoal, π
∗(xgoal))

)

(2)

where d∗(xt, xgoal) is the minimum value of d(xt, xgoal).
Second case, the state space is SN and several goal

states provide a positive reward r (cf. figure 6). The
new action-value function is noted Q and a state in SN

can be written as :

X = (x0, x1, ..., xn) | ∀i, xi ∈ S

The goal states are defined by :

Xgoali = (x0, x1, ..., xn) | ∃i, xi = xgoal

tX

1
(,) 1t goald X X −

0r >
2goalX

2
(,) 1t goald X X −

3
(,) 1t goald X X −

0r >

0r >
3goalX

1goalX

tx

(,) 1t goald x x −

1tx +

0r >

...1t dx + − goalx...

Figure 6: Example of a S3 state space.

In any case, the controller will reach a first state
Xgoali , so the optimal action-value can be written as :

Q∗(Xt, a) = max
i

[

γd
∗(Xt,Xgoali

)−1
(

r

+ γQ∗(Xgoali , π
∗(Xgoali))

)

]

Q∗(Xgoali , π
∗(Xgoali)) is difficult to estimate because

it depends on each state xi. To continue, we assume
that :

Q∗(Xgoali , π
∗(Xgoali)) = q∗(xgoal, π

∗(xgoal))

i.e. :

Q∗(Xt, a) = max
i

[

γd
∗(Xt,Xgoali

)−1
(

r

+ γq∗(xgoal, π
∗(xgoal))

)

]

Using the equation (2), we get :

Q∗(Xt, a) = max
i

q∗(xit , a)

This hypothesis is strong. The policy of a learning
using this method will not converge toward the global
optimal policy. The optimization will be local and cal-
culated as for an isolated state xi. But, if the states xi
are far away from each other, the hypothesis is nearly
true.

3 Simulations

3.1 The test-bed

The objective of this simulation is to test the perfor-
mances of the learning algorithm. The objects and the
tool are modeled by circles (cf. figure 7). Eight actions
are possible : up, down, left, right and the four diago-
nals which deterministically cause the tool to move in
the corresponding direction. All dimensions and veloc-
ities are near the reality. The hysteresis between the
magnet and the tool is modeled by a dead area. The me-
chanical interactions between the objects and the tool

10 mm

1

8

1 0

4

3

2

7

6

9

5

6y

6y

Figure 7: Snapshot of the simulation.

are also modeled : if the tool bumps into an object, it
pushes it.
When an object reaches an edge of the plane, it is put

back to a random position. Every state si of an object is
defined by its coordinates (xi, yi) calculated with regard
to the robot. This state definition is important to reduce
the data to the bare necessity. Each object can stay in
110 495 different positions.
We want the manipulator system to move all the ob-

jects towards the right edge of the screen. More pre-
cisely, the tool has to successively push each object to-
wards the right. So, the controller is rewarded when an
object is moved towards the right.

3.2 Choice of the parameters

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Steps

A
ve

ra
ge

 r
ew

ar
d

Figure 8: Average reward according to the number of
algorithm steps with α = 0.1 and γ = 0.5.

The controller and the algorithm behave very well.
During the simulations, we calculate the average reward
to study the behaviour of the algorithm. This average
reward is the ratio between the sum of rewards and the
number of algorithm steps. We obtain the characteristic
graph described in the figure 8. This graph shows the
evolution of the average reward during a learning pro-

cess. The average reward tends towards a limit value
which determines a measure of the performance of the
learning. In the case described by the figure 8, the algo-
rithm reaches a performance about 0.4. So, more than
one action out of three is a good pushing action.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

Learning rate parameter (alpha)

A
ve

ra
ge

 r
ew

ar
d

Figure 9: Performance of the algorithm according to α
with γ = 0.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Discount rate parameter (gamma)

A
ve

ra
ge

 r
ew

ar
d

Figure 10: Performance of the algorithm according to γ
with α = 0.1.

We studied the performance of the learning according
to the α and γ parameters. The figures 9 and 10 show
the results of simulation experiments with ten objects.
They represent the average reward after convergence ac-
cording to α and γ. Each of these graphs has got an
optimum. The performance of the algorithm is optimal
with α ' 0.1 and γ ' 0.5. We choose these values for
the next experimental tests.

The figure 11 shows that the convergence speed de-
pends on the number of objects. The more objects there
are, the faster the convergence is. In fact, when there
are more objects, the controller can do several back-
ups at the same time, so it learns faster. This result
is very interesting to reduce the learning time. With
this method, the high number of objects becomes an
advantage for the controller.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

Number of Objects

C
on

ve
rg

en
ce

 ti
m

e
(s

te
ps

 n
um

be
r)

Figure 11: Convergence time according to the number
of objects with α = 0.1 and γ = 0.5.

Objects

Magnetic
Manipulator

Path of the
push

Beginning of the push 10 mm

10 mm

Figure 12: Video sequence of the push of a first object.

4 Experimental results

After a simulation learning process, the controller is con-
nected to the real manipulator system. The controller
adapts itself to the reality in a short time, because the
general policy is the same. There is only a few number
of states around the objects to update.
A pushing sequence is always the same : the tool

moves towards the nearest object, bypasses it and
pushes it to the right side of the screen. The figure
12 shows a video sequence in which the tool pushes a
first object. After this first task, it begins to look for
another object and pushes it, etc. (cf. figure 13).
When the tool pushes an object, it tries to follow a

straight line because it is the optimal path. During the
search of an object, the tool bypasses the object very
near not to wasp time. It follows also the optimal path.
So, for one object, the controller always optimizes the
path of the push.
From a global point of view, the controller begin with

the nearest object. This choice is not necessarily opti-
mal. Nevertheless, as for the travelling salesman prob-
lem, this choice seems to be a good heuristics in much
cases.

Objects

Magnetic
Manipulator

Path of the
push

Beginning of the push 10 mm

10 mm

Figure 13: Video sequence of the search and the push
of a second object.

5 Conclusion

The controller is based on a parallel approach to
the Q-Learning algorithm. It has to perform block-
pushing tasks using a micro-manipulation station with
no-linearity and hysteresis features.
Simulations allowed us to choose the optimal param-

eters of the algorithm. From a local point of view, the
controller optimizes perfectly its paths. From a global
point of view, the controller chooses the nearest object.
This global behavior is close to the optimal policy.
This architecture shows good performances. The

main interest is that the controller turns the high num-
ber of objects to good account : due to the multitude of
objects, it learns faster. Nevertheless, we know that the
processing of the video image is fundamental, because
the complexity is reduced during the image processing.
Afterward, we would like to simplify this process and to
connect the algorithm direct to the pixels of the camera.

References

[1] Michaël Gauthier, Emmanuel Piat, and Alain Boujault.
Force study for micro-objects manipulation in an aque-
ous medium with a magnetic micro-manipulator. Submit-
ted to Mecatronics 3rd European-Asian Congress, Octo-
ber 2001.

[2] Ben-Shahar Ohad and Rivlin Ehud. To push or not to
push : On the rearrangement of movable objects by a
mobile robot. IEEE Transactions on systems, man and

cybernetics, part B : cybernetics, 28(5):667–679, October
1998.

[3] Sutton Richard S. Temporal Credit Assignment in Re-

inforcement Learning. PhD thesis, University of Mas-
sachusetts, Amherst, MA, 1984.

[4] Watkins Christopher J.C.H. Learning from Delayed Re-

wards. PhD thesis, Cambridge University, Cambridge,
England, 1989.

[5] Brooks Rodney A. and Mataric Maja J. Real robots, real
learning problem. Robot Learning, pages 193–214, 1993.

[6] Sutton Richard S. and Barto Andrew G. Reinforcement
Learning : An Introduction. The MIT Press, 1998.

[7] Kaelbling Leslie Pack and Moore Andrew W. Reinforce-
ment learning : A survey. Artificial Intelligence Research,
4:237–285, 1996.

[8] Watkins Christopher J.C.H. and Dayan Peter. Technical
note : Q-learning. Machine Learning, 8:279–292, 1992.

