Parallel Q-Learning for a block-pushing problem

Guillaume Laurent, Emmanuel Piat
Laboratoire d’Automatique de Besancon - UMR, CNRS 6596
25, rue Alain Savary, 25000 Besancon, France

E-mail : epiat@ens2m.fr, website : http://www.lab.ens2m.fr

Abstract

This paper presents an application of reinforcement
learning to a block-pushing problem. The manipulator
system we used is able to push millimeter size objects on
a glass slide under a CCD camera. The objective is to
automate high level tasks of pushing. Our approach is
based on reinforcement learning algorithm (Q-Learning)
because the models of the manipulator and of the dy-
namics of objects are unknown. The system is too com-
plex for a classic algorithm, so we propose an original
architecture which realizes several learning processes at
the same time. This method produces an almost opti-
mal policy whatever the number of manipulated objects
may be. Some simulations allowed us to optimize ev-
ery parameter of the learning process. In particular,
they show that the more objects there are, the faster
the controller learns. The experimental tests show that,
after the learning process, the controller fills his part
perfectly.

1 Introduction

Nowadays, there is a great interest in assembling mi-
cro and nano-systems. For planar positioning, mov-
ing objects by actively pushing them with a manipu-
lator system is as flexible, but mechanically less com-
plex than pick-and-place [1]. It does not require a spe-
cial grasping tool, but only a two degrees of freedom
micro-manipulator system like those of Wolfgang [2]
and Arai [3] or an atomic force microscope for nano-
manipulations [4, 5].

Our objective is to automate the control of a two de-
grees of freedom micro-manipulator system which is now
being developed in our lab (cf. figure 2). This micro-
manipulator system will be able to push micro-objects
like biological cells (about 10 ym) on a glass slide under
a microscope. The actuation principle uses magnetic
fields to move indirectly a micro-tool in the biological
solution [6].

The manipulator system we used for the experiments
of this article is able to push millimeter size objects. It is

only a test-bed for our controller. Next, our results will
be adapted to the micro-manipulator system. In this
paper, our objective is to make an automatic controller
able to move objects from a point to another by pushing
them with the magnetic tool.

The dynamics of block-pushing manipulations is not
coarse and it is difficult to model it (especially in mi-
croscopic and liquid environment used for cells manip-
ulations). The behaviours of the micro-tool and of the
micro-objects are difficult to predict : adhesive forces,
frictions, ... The modeling of these particular phenom-
ena due to the microscopic scale is also difficult. So, it
would be interesting to use a controller which doesn’t
require any model. Furthermore, the controller must
manage successive movements of objects and optimize a
global function as the total time of manipulation for NV
objects.

The algorithms of reinforcement learning introduced
in the 80’s by Sutton [7] and Watkins [8] offer inter-
esting characteristics for the control of our manipula-
tor system. First, they allow to approach optimal con-
trol without knowing the model of the system. The
models of the block-pushing interactions, of the micro-
manipulator system, and of the manipulated micro-
objects don’t need to be known. Reinforcement learning
provides a way of programming by reward and punish-
ment without needing to specify how the task is to be
achieved. Furthermore, with some conditions, it guaran-
tees the convergence towards the global optimal control
in Bellman’s sense. This point is particularly interesting
to minimize the total manipulation time.

Although reinforcement learning fits very nicely to ev-
ery system, it is a slow learning process. The main rea-
son is the size of the state space to visit. If the dimension
of the space is large, the learning process takes such a
long time that an on-line learning is not possible.

To control the manipulation of one object, a tradi-
tional reinforcement learning algorithm like Q-Learning
would fit. But, the controller should be able to man-
age several objects at the same time. The state space
of this application is larger and a traditional algorithm
can’t work with a so large state space. So, we propose
a new architecture to reduce this complexity.

This paper contains four parts. The two first are
dedicated to the descriptions of the manipulator sys-
tem and of the architecture of our controller. The third
presents simulations made to check the algorithm. The
last part describes experimental results obtained with
the real manipulation station.

2 The manipulator system

The manipulator system is made of a ferro-magnetic
tool moved by a permanent magnet set under the glass
slide (cf. figure 1). The tool is a 5x5 mm steel cylin-
der. The magnet and the tool have two degrees of free-
dom : up/down and left/right. The magnet is moved
by two electric motors. The motors are open loop con-
trolled. There isn’t any system to control the position
of the magnet and the system is very difficult to drive :
great hysteresis between the magnet and the tool, non-
linearity, ...

Camera
O
P @]
O
Camera view
Tool Object
C O O \
> Glass Slide

Moving Permanent Magnet

Figure 1: Working plan.

Objects are set on the glass slide. For this experiment,
we used 3 mm plastic balls. Above the manipulation
area, a video CCD camera catch the complete scene.
The figure 2 shows a photo of the manipulator system.

3 The controller

3.1 Q-Learning

Q-Learning is a reinforcement learning algorithm intro-
duced in 1989 by Watkins [8]. It is also described in the
Sutton’s book [9] and in the Kaebling’s paper [10].

The principle of the reinforcement learning is based
on learning by trials and errors. On each step of in-
teraction, the controller receives an input that provides
indications of the current state s of the system. Then,
the controller chooses an action a. This action changes
the state of the system and the controller receives a re-
ward r,, according to the new state s’. The controller’s

Figure 2: Micro and milli-manipulator systems.

job is to find a policy 7, mapping states to actions, that
maximizes the long-run sum of rewards. The conver-
gence of this algorithm towards the optimal policy 7*
was proved in 1992 by Watkins [11].

The choice of an action is based on the past experience
of the controller. A function Q(s, a) is used to memorize
the expected reward for the action a and the state s.
This function @ is called the action-value function. In
our case, the action-value function is a look-up table.

On each step of interaction, the action-value function
is updated with equation (1) :

Q(s,a) — Q(s,a)
o |ra +ymax Qs b) — Q(s,a) | (1)

with : s the old state of the system, s’ the new state
of the system, a the chosen action in the state s, a a
learning rate parameter, v a discount rate parameter.

To choose an action in a state s, the controller
uses the action-value estimations Q(s,a) and an explo-
ration/exploitation strategy called o. The selected ac-
tion is then :

a=o(s,Q)

In our case, o is the e-greedy strategy : most of the
time, the greedy action is selected (the action for which
Q(s,a) is maximum) and sometimes, a random action
is selected with a small probability e, independently of
the action-value estimations. This strategy allows us
to control exactly the exploration rate. To maintain a
constant exploration rate, we chose e = 0.1 during the
tests. This parameter can be lowered when learning is
ended.

The policy 7 of the controller, mapping states to ac-
tions, is fully defined by the action-value function @
in addition with the exploration/exploitation strategy o

(i.e. w(s) =0(s,Q)).

The Q-Learning algorithm suits very well to all small
state spaces. If the controller had to manipulate only
one object the state space would have only two dimen-
sions, so the learning would be possible. But, the con-
troller has to manage several objects. Every object
moves in a two dimensional space. It is necessary to
take into account all of possible configurations of all ob-
jects set on the glass slide. So, for N objects, the state
space has 2N dimensions and the traditional Q-learning
algorithm can’t work with a so large state space.

3.2 The controller

S £)as.af)
> » o >
R g |q(s,a
7] P> 5 > (s}
3 € 3
< » T » 3 g
o x = T
% g . ﬁ
T L = >
El s | = |as,2)
= » S >
w

»

Figure 3: Architecture of the controller.

The elementary hypothesis of our approach is to as-
sume that all the objects are the same. Each object
moves alike on the plane defined by the glass slide. So,
if it was alone, each object would generate the same
action-value function ¢. For this reason, we use the same
action-value function for all the objects. Several learn-
ing processes are done at the same time with the same
look-up table gq.

This method allows to reduce the complexity of the
system. Furthermore, the learning process may be sped
up because more backups will be done. As a general rule,
our approach allows to reduce the state space complexity
when several variables move in the same vectorial space.
For example, in our application, every object moves in
the same vectorial space defined by the glass slide plane.

Every state s; of an object ¢ is defined by its position
in the plane. On each step of interaction, the action-
value function is updated using the Q-Learning equation
for every object :

q(sia a’) — Q(S'La CL)
+oa|rss + vmbaxq(SL b) — q(si,a)

Then, we define the global action-value function for the
global state S = {s;,Vi} of the system by :

Q(Sv a) = maXQ(Siv a)

Initialize the first state S = {s;}
Repeat
Choose a using a < (S, Q)
Take action a
Observe the new state S' = {s}}
For all object ¢ do
a* « argmaxy q(s;, b)
q(si,a) < q(si, a)
+alrgo +va(si,a”) = q(si, a)]

S5

Figure 4: Controller algorithm.

This point will be discussed in the next section.

The strategy o uses the global action-value function
@ to choose the action to perform.

The algorithm architecture is summarized on the fig-
ure 3. Every object is independently processed using the
same function ¢q. At the end, the local action-values are
compared in order to evaluate the global action-value
function. The figure 4 presents the algorithm of our
controller.

3.3 Theoretical approach

Figure 5: A path example in the state space S.

First case, the state space is S and all the rewards
equal zero except the reward r > 0 associated to the
transitions leading to the state zgoq (cf. figure 5).

If x; is the state of the system at the time t, the
optimal action-value function is defined by :

o0
* o k
q (Itaa) - mf}X [E Y r$t+kﬂft+k+1:|
k=0

where max,; means that the policy which maximizes the
sum is chosen for the evaluation.

The system will reach the state x 4041, so the optimal
action-value function can be written as :

* _ 0 1
q (xtaa) - HlT?X |:'7 Taywiq + Tai i1 @iqo + ..

e+ fyd(xthgoal)_l

Teira_1Tg0al
o

>

k=d(z¢,Tgoal)

k
'Y r$t+k$t+k+1

goal,

r>0
d(X,, Xg,) —1 j

Figure 6: Example of a S? state space.

We called d(z, Zgoq1) the number of transitions to go
from the state z; to the state x404;. For all states except
Zgoal, the reward equals zero, so :

* _ d(x¢,x -1
q (xtva) - mT‘?“X |:’7 (@e:Zg0at) T$t+d—1$goal

00
d(xy,x k
+7 (@:g0a1) E Y T$t+d+k$t+d+k:+1:|
k=0

Using the Bellman’s principle, we get :
q* (:Et, a) _ ’)/d* (Itvl’goal)71 <r$t+d*1$goal

o0
E : k
+ ’ymT?‘X Y rzt+d*+kzt+d*+k+1>
k=0
ie. :

dr (mt sTgoal) -1 (T

+q" (xgoalv L (xgoal))) (2)

q*(xt,0) =

where d* (4, Tg0q1) is the minimum value of d(x, Zgoal)-

Second case, the state space is SV and several goal
states provide a positive reward r (cf. figure 6). The
new action-value function is noted @ and a state in S
can be written as :

X = (.230,1‘1, ,Jin) ‘ Vi,x; €S
The goal states are defined by :
Xgoali = (.’170,.(1)1, ;mn) | H’L',Jii = Tgoal

In any case, the controller will reach a first state
Xgoal;» 50 the optimal action-value can be written as :

Q" (X4, a) = max 'yd*(X“Xg"“li)’l(r

+ 'YQ* (Xgoali ’ W* (Xgoali)))

° 1
9
° o
.G
Ys
7 D
° 6 ¢
¢
° 10
08 5
® 10 mm
Lowlind

Figure 7: Snapshot of the simulation.

Q* (Xgoat;» ™ (Xgoar;)) is difficult to estimate because
it depends on each state x;. To continue, we assume
that :

Q* (Xgoali 5 T (Xgoali)) = q* (zgoalv 7T*(ZZ:_(]()(LI))

ie.:
Q"(X1,a) = max |y* (XoXoeat)71 (1

+ ’-Yq* (‘Tgoah * (Igoal)))

Using the equation (2), we get :
Q" (Xt,a) = max q (z;,,a)

This hypothesis is strong. The policy of a learning
using this method will not converge toward the global
optimal policy. The optimization will be local and cal-
culated as for an isolated state z;. But, if the states x;
are far away from each other, the hypothesis is nearly
true.

4 Simulated experiments

4.1 The simulated world

The objective of this simulation is to test the perfor-
mances of the learning algorithm. The objects and the
tool are modeled by circles (cf. figure 7). Eight actions
are possible : up, down, left, right and the four diagonals
which deterministically cause the tool to move in the
corresponding direction. All dimensions and velocities
are near the reality. The hysteresis between the magnet
and the tool is modeled by a dead area. The mechanical
interactions between the objects and the tool are also
modeled : if the tool bumps into an object, it pushes it.

When an object reaches an edge of the plane, it is put
back to a random position. Every state s; of an object is
defined by its coordinates (z;,y;) calculated with regard

Average reward
°
IS
%

0.05

JRERR"Y

L L L L
12 14 16 18 2

1
Steps «10°

Figure 8: Average reward according to the number of
algorithm steps with @ = 0.1 and v = 0.5.

Average reward

[01 0.2 03 0.4 05 06 0.7 08 0.9 1
Learning rate parameter (alpha)

Figure 9: Performance of the algorithm according to «
with v = 0.5.

to the robot. This state definition is important to reduce
the data to the bare necessity. Each object can stay in
110 495 different positions.

We want the manipulator system to move all the ob-
jects towards the right edge of the screen. More pre-
cisely, the tool has to successively push each object to-
wards the right. So, the controller is rewarded when an
object is moved towards the right.

4.2 Results

The controller and the algorithm behave very well. Dur-
ing the simulations, we calculate the average reward to
study the behaviour of the algorithm. This average re-
ward is the ratio between the sum of rewards and the
number of algorithm steps. We obtain the characteristic
graph described in the figure 8. This graph shows the
evolution of the average reward during a learning pro-
cess. The average reward tends towards a limit value
which determines a measure of the performance of the
learning. In the case described by the figure 8, the algo-
rithm reaches a performance about 0.4. So, more than
one action out of three is a good pushing action.

°
b

Average reward

015f

0 01 02 03 04 05 06 07 08 09 1
Discount rate parameter (gamma)

Figure 10: Performance of the algorithm according to
with a = 0.1.

x10"

Convergence time (steps number)

L L L
1 2 3 4

5 6
Number of Objects

Figure 11: Convergence time according to the number
of objects with a = 0.1 and v = 0.5.

We studied the performance of the learning according
to the a and ~y parameters. The figures 9 and 10 show
the results of simulation experiments with ten objects.
They represent the average reward after convergence ac-
cording to o and . Each of these graphs has got an
optimum. The performance of the algorithm is optimal
with o ~ 0.1 and v ~ 0.5. We choose these values for
the next experimental tests.

The figure 11 shows that the convergence speed de-
pends on the number of objects. The more objects there
are, the faster the convergence is. In fact, when there
are more objects, the controller can do several back-
ups at the same time, so it learns faster. This result is
very interesting to reduce the learning time. With this
method, the high number of objects becomes an advan-
tage for the controller.

5 Experimental results

After a simulation learning process, the controller is con-
nected to the real manipulator system. The controller
adapts itself to the reality in a short time, because the
general policy is the same. There is only a few number

Objects
Path of the
push
Wep oV a
oS /o
Magnetic
Manipulator 10 mm
[

Figure 12: Video sequence of the push of a first object.

®
7% _
7 -

g

&Y

Beginning of the push

10 mm
Lnduul

Figure 13: Video sequence of the search and the push of
a second object.

of states around the objects to update.

A pushing sequence is always the same : the tool
moves towards the nearest object, bypasses it and
pushes it to the right side of the screen. The figure
12 shows a video sequence in which the tool pushes a
first object. After this first task, it begins to look for
another object and pushes it, etc. (cf. figure 13).

When the tool pushes an object, it tries to follow a
straight line because it is the optimal path. During the
search of an object, the tool bypasses the object very
near not to wasp time. It follows also the optimal path.
So, for one object, the controller always optimizes the
path of the push.

From a global point of view, the controller begin with
the nearest object. This choice is not necessarily opti-
mal. Nevertheless, as for the travelling salesman prob-
lem, this choice seems to be a good heuristics in much
cases.

6 Conclusion

The controller is based on a parallel approach to the
Q-Learning algorithm. It has to perform block-pushing
tasks using a manipulator system with non-linearity and
hysteresis features.

Simulations allowed us to check the behaviour of our
controller. From a local point of view, the controller
optimizes perfectly its paths. From a global point of
view, the controller chooses the nearest object. This
global behaviour is closed to the optimal policy.

This architecture shows good learning performances.
The main interest is that the controller turns the high
number of objects to good account : due to the multi-
tude of objects, it learns faster. Nevertheless, the con-
vergence speed could be improved by using faster learn-
ing algorithm like dyna-Q or priority sweeping.

References

[1] Mason M.T. Mechanics and planning of manipulator
pushing operations. International Journal of Robotics
Research, 5(3):53-71, 1986.

[2] Wolfgang and Fearing Ronald S. Alignment of mi-
croparts using force controlled pushing. SPIE Conf. on
Microrobotics and Micromanipulation, 3519:148-156,
november 1998.

[3] Arai Fumihito, Ogawa Masanobu, and Fukuda Toshio.
Indirect manipulation and bilateral control of the mi-
crobe by laser manipulated microtools. In Proc. of the
2000 IEEE/RSJ Int. Conf. On Intelligent Robots and
Systems, 2000.

[4] Hansen Theil L., Kiihle A., Sgrensen A.H., Bohr J., and
Lindelof P.E. A technique for positioning nanoparti-
cles using an atomic force microscope. Nanotechnology,
9:337-342, 1998.

[5] Resch R., Lewis D., Meltzer S., Montoya N., Koel B.E.,
Madhukar A., Requicha A.A.G., and Will P. Manipula-
tion of gold nanoparticles in liquid environnements us-
ing scanning force microscopy. Ultramicroscopy, 82:135—
139, 2000.

[6] Michaél Gauthier, Emmanuel Piat, and Alain Boujault.
Force study for micro-objects manipulation in an aque-
ous medium with a magnetic micro-manipulator. Sub-
mitted to Mecatronics 3rd Furopean-Asian Congress,
October 2001.

[7] Sutton Richard S. Temporal Credit Assignment in Re-
inforcement Learning. PhD thesis, University of Mas-
sachusetts, Amherst, MA, 1984.

[8] Watkins Christopher J.C.H. Learning from Delayed Re-
wards. PhD thesis, Cambridge University, Cambridge,
England, 1989.

[9] Sutton Richard S. and Barto Andrew G. Reinforcement
Learning : An Introduction. The MIT Press, 1998.

[10] Kaelbling Leslie Pack and Moore Andrew W. Rein-
forcement learning : A survey. Artificial Intelligence
Research, 4:237-285, 1996.

[11] Watkins Christopher J.C.H. and Dayan Peter. Technical
note : Q-learning. Machine Learning, 8:279-292, 1992.

