
Learning Mixed Behaviours with Parallel Q-Learning

Guillaume J. Laurent, Emmanuel Piat

Laboratoire d’Automatique de Besançon - UMR CNRS 6596
25, rue Alain Savary, 25000 Besançon, France

E-mail: epiat@ens2m.fr, website: http://www.lab.ens2m.fr

Abstract

This paper presents a reinforcement learning algo-
rithm based on a parallel approach of the Watkins’s
Q-Learning. This algorithm is used to control a two
axis micro-manipulator system. The aim is to learn
complex behaviours as reaching target positions and
avoiding obstacles at the same time. The simulations
and the tests with the real manipulator show that this
algorithm is able to learn simultaneously opposite be-
haviours and that it generates interesting action poli-
cies with regard to the global path optimization.

1 Introduction

Our objective is to automate the control of a micro-
manipulator system called WIMS (WIreless Micro-
manipulation System) which is now being devel-
oped in our lab [1]. This two degrees of freedom
micro-manipulator system will be able to push micro-
objects like biological cells (about 10 µm) between
two glass slides under a microscope. The actuation
principle uses a magnetic field to indirectly move a
micro-tool in the biological solution (cf. figure 1).

In this paper, we focus on the control of this manip-
ulator. The purpose is to design a controller able to
move the tool between many objects without hitting
them. More precisely, the tool has to reach a target
position defined by a human operator, while avoiding
objects considered as obstacles.

The number and the position of the obstacles are
not defined and can evolve with time. In the same
way, there may be several targets and their positions
are not fixed either. Moreover, the behaviours of the
micro-tool and of the micro-objects are difficult to
predict because of adhesive forces, frictions, hystere-
sis. . . The modeling of these particular phenomena
due to the microscopic scale is difficult. For these
reasons, we chose an approach using learning fea-
tures. The algorithms of reinforcement learning in-
troduced in the 80’s by Sutton [2] and Watkins [3]
offer interesting characteristics for the control of our
manipulator system. Reinforcement learning pro-

Microscope

Permanent
magnet

CellsTool

glass slides

2 axis micro-
positioning system

CCD Camera

Control system

water

Figure 1: The WIreless Micromanipulation System
(WIMS).

vides a way of programming by rewards and pun-
ishments without needing to specify how the task
is to be achieved. It was demonstrated that some
algorithms like the Watkins’s Q-Learning converge
towards the optimal control policy with some condi-
tions [4].

Nevertheless, these algorithms are rather adapted to
the control of simple systems. To learn more com-
plex behaviours, hierarchical algorithms were devel-
oped. But these algorithms require to define either
a hierarchical fixed architecture (Gated behaviour
[5] [6] [7], Feudal Q-Learning [8]) or a division of
the problem into sub-objectives (Compositional Q-
Learning [9]). Furthermore, these algorithms can’t
adapt themselves to a changing number of targets or
obstacles.

Our own approach was presented in a previous pa-
per [10]: it is a new learning algorithm called parallel
Q-Learning. This algorithm has two advantages. It
adapts itself immediately to any situation whatever
the number of targets may be. Moreover, the higher
the number of targets is, the faster it learns. So, it
is well adapted to reach many targets which num-
ber and position may change. But this algorithm is
limited because it does not allow to mix opposite be-
haviours as targets searching and obstacles avoiding.



To allow to learn these more complex behaviours,
we enriched two of the functions of the previous al-
gorithm.

This paper contains five parts. The both first are
dedicated to the descriptions of Q-Learning and of
the architecture of our controller. The third presents
the manipulation system and the frame of the tests.
The performances of the algorithm are described in
the last two parts. The simple case where all the
objects are the same, the problem of opposite be-
haviours and the experimental results obtained with
the real manipulation system are presented in these
parts.

2 Q-Learning

Q-Learning is a reinforcement learning algorithm in-
troduced in 1989 by Watkins [3]. The principle of
the reinforcement learning is based on learning by
trials and errors. On each step of interaction, the
controller receives an input that provides indications
of the current state Xt of the system. Then, the
controller chooses an action ut. This action changes
the state of the system and the controller receives a
reward rt according to the new state Xt+1. The con-
troller’s job is to find a policy, mapping actions to
states, that maximizes the long-run sum of rewards.

Controller

DELAY

DELAY

SENSORS ACTUATORS

REINFORCEMENT ACTION
SELECTION

MEMORY

ut

ut-1

Xt-1

ut

Xt

System

Xt rt

rtXt

Figure 2: Q-Learning operating cycle.

The Q-Learning operating cycle is illustrated by the
figure 2. The memory stores an estimation of the
expected return1 in a real value q(X,u) called action-
value for every observed state-action couple (X,u).

On the left, the reinforcement function updates the
action-value function q on each step of interaction,

1summation of future expected rewards for a given control
policy

with the following equation:

q(Xt−1, ut−1)← q(Xt−1, ut−1)+

+α[rt+γmax
v

q(Xt, v)− q(Xt−1, ut−1)] (1)

On the right, the action is selected by two stages.
First, the expected return of every action is esti-
mated using the action-value q(X,u). Then, a pol-
icy chooses the action according to an exploration
/ exploitation criteria. In this paper, we use the ε-
greedy2 policy because of its simplicity. Other poli-
cies could be used as well. ε is set to 0.1

3 Our approach

2
tx

6
tx

5
tx

7
tx

1
tx

3
tx

4
tx

u

v

TARGET

OBSTACLE TOOL

Figure 3: State example.

Our approach takes place in a particular case. The
controller receives on each step of interaction a state
Xt made of a changeable number Nt of elementary
perceptions xi

t. All these elementary perceptions x
i
t

belong to the same vectorial space X.

Xt = {x
i
t | 1 ≤ i ≤ Nt, x

i
t ∈ X} (2)

In our application, Xt contains the set of targets and
obstacles. In the example shown by the figure 3, the
state is:

Xt = {x
1
t , x

2
t , x

3
t , x

4
t , x

5
t , x

6
t} (3)

Every target or obstacle constitutes an elementary
perception xi

t. These elementary perceptions are de-
fined by their type (target or obstacle) and their co-
ordinates in the reference mark bound to the tool (cf.
figure 3), i.e.:

xi
t = (type, u, v) (4)

2With a small probability ε, a random action is selected
independently of the action-value q(Xt, u), otherwise, the se-
lected action is the one for which q(Xt, u) is maximum



The elementary hypothesis of our approach is to as-
sume that the perceptions of Xt are similar and in-
dependent each other. Intuitively, the presence of
one or several targets doesn’t change their own be-
haviour. It means that a perception has a single
behaviour. So, the controller has to learn how a per-
ception behaves to be able to predict the behaviour
of all states made of the entire set of perceptions.

In this way, the algorithm proceeds to a learning like
Q-Learning for every perception but always using the
same action-value function q. So, the action-value
function q(xi

t, u) associates an estimation of the ex-
pected rewards to every perception xi

t and not to a
state Xt. Then, the action selection function allows
to generalize this learning to a complete state.

3.1 Reinforcement function

TEMPORAL
MATCHING

PARALLEL
REINFORCEMENT

ut-1

Xt-1

Mt

Xt rt

REWARD
ALLOCATING

MRt

Figure 4: The new reinforcement function.

The aim of this function is to update the memory
with the equation 1 using every perception as if it
were the state of the system. To do that, the evolu-
tion of every perception must be reconstructed. But,
in the two states Xt−1 and Xt, the elementary per-
ceptions are not ordered, xi

t is not the temporal suc-
cessor of xi

t−1. So, we must create a tool to match in
twos the perceptions of the states Xt−1 and Xt. On
the other hand, in the classic frame of reinforcement
learning, the reward signal is a scalar. In our case,
we assume that perceptions are independent. So, a
reward can be connected with a single perception.
The question is to know which is this perception.

To solve these problems, the reinforcement box is en-
riched by new functions (cf. figure 4). A temporal
matching function connects the perceptions of Xt−1

with their temporal successor of Xt. A reward allo-
cating function determines the perception connected
with the last obtained reward. Finally, a parallel re-
inforcement function updates the memory with all
collected data .

Temporal matching function. The purpose of
the matching function is to match in twos the per-
ceptions of the states Xt−1 and Xt according to a
defined criterion. In practice, this function has to
reconstruct the spatial evolution of every perception.

For example, it has to reconstruct the motion of ev-
ery target when the robot moves.

The output of this function is a set Mt of triplets
called transitions. Every transition is made of an
elementary perception of Xt−1, of its supposed suc-
cessor belonging to Xt and of the last action ut−1. If
f is the matching function, Mt can be written as:

Mt = {(x, ut−1, y) |x ∈ Xt−1, y ∈ Xt, y = f(x)}
(5)

It remains to choose f in the set F of the functions
mapping Xt−1 to Xt. In our case, we chose the crite-
rion of the minimization of the sum of distances be-
tween two elementary perceptions. So, f must verify,
for any function g in F:

∑

x∈Xt−1

‖x− f(x)‖ ≤
∑

x∈Xt−1,g∈F

‖x− g(x)‖ (6)

To obtain a good solution in a weak calculation time,
we opted to use a heuristic method. Perceptions are
matched with their closest neighbour in a random
order. This heuristic method gives good results if
the perceptions are far enough from each other (like
in our application).

Finally, if a new object enters or goes out of the field
of vision, the states Xt−1 and Xt won’t have the
same number of perceptions (Nt−1 6= Nt). In that
case, these new or last perceptions are not used by
the matching function during one step of interaction.

Reward allocating function. The aim of this
function is to find the elementary perception con-
nected with the last obtained reward.

For example, if the robot reaches a target, the re-
ward is equal to 1. The perception of the target
which caused this reward is the one which is at the
same position as the robot. But this information
comes from our global knowledge of the system. The
controller has to learn this link. It must find the
perception which caused the reward with the only
information it has.

Just before reaching a target, every perception x of
the state Xt of the robot predicted a value of the
expected return given by the action-value function
q(x, u). The perception of this target had to predict
1 if the controller already met this situation. The
other targets which are not reachable in one step
probably predicted values lower than 1. So, the per-
ception connected with the reward 1 is the one which
predicted this reward at best.

So, our method allocates the reward to the percep-
tion of the previous state which action-value is the
closest to this reward. The others get zero. This al-
gorithm means that only one elementary perception
is connected with the reward.



If the reward is positive, the perception x∗ which
receives this reward is the one for which q(x, u) is
maximum for all the triplets (x, u, x′) in Mt, i.e.:

x∗ ← argmax
∀x,(x,u,x′)∈Mt

q(x, u) (7)

If the reward is negative, we have to find the percep-
tion which predicted the worst expected return. This
worst expected return is not estimated by q. So, we
use a new function called w. w(x, u) represents an
estimation of the worst expected return for the per-
ception x taking the action u. w is updated in the
same way as q but by using the operator min rather
than max (see next section).

The perception which receives the negative reward is
the one for which w(x, u) is minimum, i.e.:

x∗ ← argmin
∀x,(x,u,x′)∈Mt

w(x, u) (8)

The output of this function is a set called MRt of
transitions with rewards. These transitions with re-
wards are made of the three members of a transition
and of the reward allocated to this transition.

Parallel reinforcement function. The parallel
reinforcement function updates the memory with the
information supplied by the reward allocating func-
tion in the following way:

For all (x, u, x′, r) ∈ MRt do
q(x, u)← q(x, u) + α[r + γmax

v
q(x, v)− q(x, u)]

w(x, u)← w(x, u) + α[r + γmin
v

w(x, v)−w(x, u)]

3.2 Action selection function

ESTIMATION

Xt

EXPLORATION/
EXPLOITATION

POLICY

Qt ut

Figure 5: The new action selection function.

This box selects the action which is sent to the ac-
tuators. It contains two parts (cf. figure 5). The left
part calculates for every action u of U an estimation
of its expected return Qt(u) for the current state Xt.
In fact, the estimation function is a fusion operator
of the expected returns generated by every elemen-
tary perception [10]. The right function uses the Qt

values and a exploration / exploitation policy in the
same way as Q-Learning.

Figure 6: The manipulator system and the WIMS
(on the left).

In [10], we presented the results obtained with the
max fusion operator . Although successful, this op-
erator does not allow to mix opposite behaviours be-
cause negative expected returns are forget. For this
reason, we chose the sum operator. The expected
return of every action is the sum of the expected re-
turns of every elementary perception, i.e.:

∀u, u ∈ U, Qt =
∑

x∈Xt

q(x, u) (9)

We will see farther that this operator produces better
optimization results.

4 Test-bed

The manipulator system we used for the experiments
of this article is able to push millimeter size objects.
It is only a test-bed for our controller. Next, our
results will be adapted to the future WIMS.

This manipulator system is made of a ferro-magnetic
tool moved by a permanent magnet set under the
glass slide (cf. figure 1). The tool is a 5×5 mm
steel cylinder. The magnet and the tool have two
degrees of freedom: up/down and left/right. The
magnet is moved by two electric motors. The system
is very difficult to drive: great hysteresis between
the magnet and the tool, non-linearity,. . . Above the
manipulation area, a video CCD camera allows to
calculate the position of every object and to generate
the state Xt of the system. The figure 6 shows a
photo of the real manipulator system and the WIMS.

Aim. The controller has to learn to move the tool
towards a target and to avoid obstacles at the same
time. Targets are virtual objects placed by a human
operator according to the wanted task. Obstacles
are 2 mm plastic balls set on the glass slide. The
perception space X is divided into 47×35 boxes for



every kind of object, that is to say 3290 different
perceptions.

Four discrete actions generate a displacement of the
tool: up, down, right, left. If the tool reaches a tar-
get, the controller receives a positive reward equal to
1. Then, the target disappears. If the tool touches
an obstacle, the controller receives a negative reward
equal to -1. The obstacles are motionless and fixed.

To test the performances of the learning algorithm,
we use a simulation of this system.

5 Learning to mix similar behaviours

In this part, we study the behaviour of the algorithm
with states made of similar perceptions (i.e. without
obstacles)

5.1 Previous work

The preliminary stage consists in determining the
optimal values of the learning parameters (see [10]).
Using the simulation, we obtain α = 0.5, γ = 0.5.

The analysis of the learning convergence time is in-
teresting. The conclusion was already presented in
the previous article. It is about the influence of the
number of targets on the learning speed. The larger
the number of targets is, the faster the learning is
(the learning is ten times faster with ten targets with
regard to one target).

5.2 Resulting paths

START

END

Figure 7: Path of the tool with ten targets.

The figure 7 shows the path in the simulated system
after a sufficient learning time. The analysis of this
path is interesting in two levels. First, the actions
done to reach a target are almost optimal. The con-
troller found the optimal policy with the exception
of exploration action (about one action for ten ac-
tions because ε = 0.1). This result normally reached
by the Q-Learning algorithm was not changed with
the parallel process. The second point is even more

interesting. From a more global point of view, the
general path is optimized. The controller always be-
gins to reach targets belonging to the densest zone.
Then, it goes for a collecting tour exactly like an
optimal travelling salesman.

6 Learning to mix opposite behaviours

In this part, we study the behaviour of the algorithm
when there are obstacles.

6.1 Learning speed

0 5 10 15
x 104

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Steps

A
ve

ra
ge

 re
w

ar
d

Figure 8: Average reward with ten targets without
obstacles (broken line) and with five obstacles (con-
tinuous line) according to the number of algorithm
steps.

The figure 8 compares the performances with obsta-
cles and without obstacles. If there are obstacles,
the controller doesn’t get as much positive rewards.
Indeed, when the tool by-passes an obstacle, it has
to do a longer way to reach the target. This longer
way causes a fall in the received average rewards.
Furthermore, at the beginning of the learning, the
received rewards are often negative because the con-
troller has not learnt to avoid obstacles yet. Finally,
the learning time is longer because the algorithm has
to learn to sort the targets and the obstacles. So, the
reward allocating function has to learn to differenti-
ate the obstacles from the targets.

On the other hand, if the obstacles are introduced
after the controller learnt to reach targets, the re-
sults are different. The figure 9 shows the results
when obstacles are added during the test. The loss
of efficiency is smaller. The controller receives more
rewards than in the previous test. Furthermore, the
learning of the obstacle avoiding behaviour is almost
immediate.

These results show that the way of learning is im-
portant to speed the learning and to reach better
performances. This gradual learning method helps
the controller to sort the obstacles and the targets.



0 5 10 15
x 104

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Steps

A
ve

ra
ge

 re
w

ar
d

Figure 9: Average reward when the five obstacles
are added during the test (continuous line) with re-
gard to the previous test (broken line).

START

END

Figure 10: Path of the tool with seven targets and
ten obstacles.

6.2 Resulting paths

The figure 10 shows that the controller find good
paths. Indeed, the path between every target is op-
timized and is very close of obstacles. In the global
point of view, the obstacles don’t change the opti-
mization. The mixing of behaviours is very satisfac-
tory.

6.3 Test with the real manipulator system

After a learning process with the simulation, the con-
troller is connected to the real manipulator system.
The figure 11 shows the path of the tool. The path is
more chaotic because the real system is not as perfect
as the simulation. Especially, the large hysteresis be-
tween the magnet and the tool forces the controller
to step aside when it changes its way.

7 Conclusion

This paper presents the parallel Q-Learning algo-
rithm. The tests show that this algorithm is able to
learn simultaneously opposite behaviours. For exam-
ple, it is able to learn to search targets while avoiding
obstacles. Beyond this behaviours mixing capacity,

START

END

Figure 11: Path of the real manipulator system with
five targets and ten obstacles.

the action policy of the algorithm are specially inter-
esting with regard to the global path optimization.
The controller always begins to reach targets belong-
ing to the densest zone. Then, it goes for a collecting
tour exactly like an optimal travelling salesman.

We work now to adapt this algorithm to more com-
plex control policies like the control of systems with
dynamics elements (for example a block-pushing
problem with obstacles avoidance).

References

[1] M. Gauthier and E. Piat. Behavior of a magnetic
manipulator of biological objects. In International

Conference on Robotics and Automation, Washington
D.C., 2002.

[2] R.S. Sutton. Temporal Credit Assignment in Rein-

forcement Learning. PhD thesis, University of Mas-
sachusetts, Amherst, MA, 1984.

[3] C. Watkins. Learning from Delayed Rewards. PhD
thesis, Cambridge University, Cambridge, 1989.

[4] C. Watkins and Peter Dayan. Technical note : Q–
learning. Machine Learning, 8:279–292, 1992.

[5] P. Maes and R. Brooks. Learning to coordinate be-
haviors. In Eighth National Conference on Artificial

Intelligence, pages 796–802, 1990.

[6] S. Mahadevan and J. Connell. Automatic program-
ming of behaviorbased robots using reinforcement
learning. In Ninth National Conference on Artificial

Intelligence, Anaheim, CA, 1991.

[7] L. Lin. Hierachical learning of robot skills by rein-
forcement. In International Conference on Neural

Networks, 1993.

[8] P. Dayan and G.E. Hinton. Feudal reinforcement
learning. In Advances in Neural Information Process-

ing Systems 5, San Mateo, CA, 1993.

[9] S.P. Singh. Transfer of learning by composing solu-
tions of elemental sequential tasks. Machine Learn-

ing, 8(3):323–340, 1992.

[10] G. Laurent and E. Piat. Parallel q-learning for a
block-pushing problem. In International Conference

on Intelligent Robots and Systems, Maui, USA, 2001.


