
Improving Reinforcement Learning Speed
for Robot Control

Laetitia Matignon, Guillaume J. Laurent, Nadine Le Fort-Piat
Laboratoire d’Automatique de Besançon UMR CNRS 6596

24 rue Alain Savary, 25000 Besançon, France
E-mails : (laetitia.matignon,guillaume.laurent,nadine.piat)@ens2m.fr

Web site : lab.cnrs.fr

Abstract—Reinforcement Learning (RL) is an
intuitive way of programming well-suited for use on
autonomous robots because it does not need to specify
how the task has to be achieved. However, RL remains
difficult to implement in realistic domains because
of its slowness in convergence. In this paper, we
develop a theoretical study of the influence of some RL
parameters over the learning speed. We also provide
experimental justifications for choosing the reward
function and initial Q-values in order to improve RL
speed within the context of a goal-directed robot task.

Index Terms—goal-directed reinforcement learning,
reward function, initial Q-values, goal bias, progress
estimators

I. Introduction

Reinforcement learning (RL) [1] is a class of learning
from experience suitable for robotics when on line learning
without information about the environment is required.
For each of its state, the controller can learn which of its
available actions will result in the best performance for a
given task. For example, if the mobile robot collides with
an obstacle, it will learn that it is a bad action, but if
it reaches the goal, it will learn it is a good action. Such
feedback from the environment is named reinforcement or
reward. The controller’s aim is to maximise its expected
future rewards for state-action pairs, represented by the
action values. Q-learning [2] is a commonly form of RL
where the optimal policy is learned implicitly in the form
of a Q-function.

Numerous applications of RL on robotic systems have
been published. Among successful applications of RL are
the learning of the motion of standing up from a chair
by humanoid robots [3] or the control of a stable altitude
loop of an autonomous quadrotor [4]. RL was also used
to control a micro-manipulator system [5].

However, RL has an inherent problem : its learning time
increases exponentially with the size of the state space.
Consequently, RL remains difficult to implement in realis-
tic domains, typically the robotics domain. Thus, several
methods have been proposed to speed up RL through the
incorporation of prior knowledge or bias into RL.

One example [6] is to add prior knowledge by a human
operator who supplies sample robot trajectories. During
this passive phase, the robot is simply using examples to
boot the value function. Guidance can also be applied by
an experienced robot whose Q-values are accessible by the
learning robot (imitative reinforcement [7]).

Another way is to modify or shape the reward signal.
Mataric [8] proposed a methodology for designing reward
functions that take advantage of implicit domain knowl-
edge. This methodology involves the use of continuous
reward functions and progress estimators. Likewise, with
reward shaping, the rewards from the environment are
augmented with additional rewards. An application is the
problem of learning to balance on a bicycle [9]. However,
reward shaping can lead the controller into learning sub-
optimal policies and so, traps the system.

Wiewora [10] completed the reward shaping study and
moreover, proved certain similarities between potential-
based shaping and initial Q-values. Indeed, the most
elementary method for biasing learning is to choose the
initial Q-values. Brief studies of the effect of this idea can
be found in [11].

In the above examples, methods consist in embedding
the bias in the reward function or the initial action value
function. These RL parameters play an important part
in RL. Nevertheless, although RL has been studied ex-
tensively and its convergence properties are well known,
in practice, people often choose reward function on one’s
intuition and initial Q-values arbitrarily [1].

We propose to define some rules to choose these both RL
parameters in a cautiously way. Indeed, initial Q-values
do not depend only on an individual decision, but are
influenced by some properties. In this paper, we discuss
the effects of RL parameters on the policy in order to
suggest a generic analysis. We validate our analysis with
Q-learning algorithm. The main issue is to shed light on
how to correctly initialize RL parameters in order to obtain
the desired optimal behavior in a minimal time within the
context of a goal-directed robot task, in order to efficiently
implement RL on real robots.

Fig. 1. Sensory motor loop.

II. Reinforcement Learning

RL is a machine learning paradigm which does not
require a model of the dynamics of the environment. It is
based on the trials and errors principle. At each time step,
the controller chooses an action at that leads the system
from the state st to the new state st+1

1. Then it receives
a reward rt+1 according to st, at and st+1 (Fig. 1). The
goal of the controller is to learn a mapping from states
to actions called a policy which maximises the expected
sum of discounted rewards received over time 2. The RL
algorithm that we use in this work is Q-learning [2]. The
Q-learning optimal action-value function is :

Q∗(s, a) = E
[
R(s, a, s′) + γ max

a′
Q∗(s′, a′)

]
(1)

This represents the expected value of the reward for taking
action a from state s, ending up in state s′, and then
acting optimally. γ ∈ [0; 1[is the discount factor. Q-
values are typically stored in a tabular representation. Q-
learning is an off-policy method, i.e. the optimal action-
value function Q∗ is directly approximated, independently
of the policy being followed. Its updating rule is :

Q(s, a)← Q(s, a) + α
[
r + γ max

a′
Q(s′, a′)−Q(s, a)

]
(2)

where r is the reward received for the transition from
the state s to the new state s′ by executing the action
a. α ∈]0; 1] is the learning-rate parameter. Under some
conditions [12], Q-learning algorithm is guaranteed to con-
verge to the optimal value function Q∗. The Q-Learning
algorithm chooses the action according to an exploration
/ exploitation criteria. We used the ε-greedy method, in
which the probability of taking a random action is ε and,
otherwise, the selected action is the one with the largest
Q-value in the current state 3.

III. Choice of uniform initial Q-values with a
binary reward function

We make the assumption that two general trends stand
out : the global policy and a specific behavior at the

1The framework is defined as a finite set of states S and a finite
set of actions A.

2The rewards are discounted by a discount factor γ that controls
the balance between the significance of immediate rewards and future
rewards.

3If several values are identical, the choice will be random among
greedy actions.

beginning of the learning process. In this section, we are
going to set out that these both tendencies depend on
the shape of the reward function and on the initialization
of the action-value function. We first considered a binary
reward function which has the advantage to include a lot
of cases and it is possible to extrapolate.

A. Optimal policy

The binary reward function is such as the reward re-
ceived is always r∞ except if the new state is the goal
state and then, the reward is rg. It’s given by :

∀s ∈ S ∀a ∈ A, R(s, a, s′) =
{

rg if s′ = sg

r∞ else (3)

where s′ is the state obtained by executing the action a
from s, and sg the goal state.
In case of all rewards are identical (rg = r∞), the solution
of the equation (1) is a constant noted Q∞,

∀s ∀a Q∗(s, a) = Q∞ =
r∞

1− γ
(4)

That is to say that during the learning process, Q-values
for all state-action values converge to Q∞.

Nevertheless, if rg 6= r∞, Q∞ is the limit of the action-
value function Q∗(s, a) when the distance between s and sg

tends toward infinity. So, toward the goal, states are more
and more or less and less attractive depending on rg and
Q∞. On the one hand, if rg > Q∞, the Q-value of state-
action pairs moving to the goal state will be more and more
attractive than Q∞. So the global optimal policy is the
shortest way toward the goal state. On the other hand, if
rg < Q∞, the optimal policy is random everywhere except
a local repulsion of sg near the goal state.

Of course, the shortest way toward the goal is the sought
optimal policy within our context of reaching a goal in a
minimal time. So rg must always be superior to Q∞.

B. Behavior at the beginning of the learning process

As well as the reward function, the initial value Qi of
the action-value function has an effect on the policy, but
only at the beginning of the learning process. We believe
that a global trend can be underscored during the first
trials of the learning process.

Let’s examine what the Q-values are expected to be
at the beginning. If we calculate the first updating of a
state-action pair (s, a) thanks to the equation (2), such as
the next state s′ is not the goal state and has not been
updated, we have :

Q(s, a)← Qi + α [r∞ + (γ − 1)Qi]
← Qi + α(1− γ)(Q∞ −Qi) (5)

So the discriminating value of Qi is also Q∞. According
to the value of Qi compared to Q∞, states already visited
will be more or less attractive as long as the controller has
not reached plenty of times the goal state.

Fig. 2. Non-deterministic 20× 20 maze with a single start state in
the upper left corner (S) and a goal state in the opposite corner (G).

• If Qi > Q∞ : states which have already been visited
will have a value lower than the value of states which
haven’t yet been visited (Q(s, a) < Qi). In other
words, states which haven’t yet been visited will be
more attractive. It induces the controller to explore
more systematically at the beginning of the learning
than a random exploration. We called it systematic
exploration behavior.

• If Qi < Q∞ : states which have already been visited
will have a value superior to the value of states
which haven’t yet been visited (Q(s, a) > Qi). i.e.
states which have already been visited will be more
attractive. It leads the controller into less exploration
at the beginning, which considerably slows down the
learning. We named this behavior “moving round in
circles”. Of course, it’s better to avoid it.

• If Qi = Q∞ : states which have already been visited
will have the same value than states which haven’t
yet been visited (Q(s, a) = Qi). So we obtain at the
beginning a pure random behavior.

C. Maze experiments

We have discussed how traditional reward functions
and arbitrary initial Q-values may slow down the learning
of an interesting policy. At this point, we are going to
validate this previous analysis and we have chosen for
simplicity and clarity to use at first a non-deterministic
maze domain to demonstrate how the robot’s behavior is
influenced by using binary rewards and different initial
Q-values.

1) Task: The system is represented by a mobile robot
which has to travel through a maze-like environment
(Fig. 2). Each robot’s position is a discrete state. When
the robot reaches the goal state, the trial ends. The robot
chooses from four actions, representing an intention to
move in one of the four cardinal directions (N,E,S,W). An
action that would move the robot in a wall instead leaves
the robot in its current position. Any movement moves
the robot in the intended direction with probability 0.6,

Fig. 3. Maze experiments with different Qi averaged over 50 inde-
pendent runs. Steps to goal vs. trial number. It illustrates random and
systematic exploration as behavior at the beginning of the process.

and otherwise in a random state of the four neighboring
states of the expected state. All trials use Q-learning with a
learning-rate α = 0.1, a discount factor γ = 0.9, a tabular
Q-table initialized uniformly Qi and follow the ε-greedy
method (ε = 0.1).

2) Binary reward function: Our reward function repli-
cates the function given in (3), with rg = 1 and r∞ = 0.
With such a reward function, the optimal policy is the
shortest way toward the goal and the discriminating value
of Qi is 0 (Q∞=0). Fig. 3 illustrates our previous analysis.
As can be readily seen, using the systematic exploration
behavior helped speed up learning during the first trials.
Indeed, the robot visited every nook and cranny of the
complex maze and the goal state sg was discovered faster
than in case of a random exploration. On the other hand,
in case of systematic exploration, the robot was always
spurred on to explore and that’s why it always took more
steps to reach the goal after some trials. Besides, we used
different values of Qi for the systematic exploration and we
notice the more Qi was superior to Q∞, the more the robot
explored. So, the more the difference between Qi and Q∞
is important, the more the general behavior is underlined.

Concerning the moving round in circles behavior
(Qi < 0), we do not submit any experiments. Indeed, the
robot took too much time to reach the goal given that it
moved round in circles in an area where Q updates are in
the shape of γn, with n the trial number. So the action-
value function in the moving round area tends towards
zero, which is a well approximated value 4. Anyway, this
behavior has to be avoided.

D. Conclusion
These experiments shed light on the importance of initial

Q-values. The choice of Qi is not trivial and must be
carried out according to the desired behavior. When the
system naturally goes away from the goal, a systematic
exploration should be preferred so as to speed up learning
at the beginning. Indeed, systematic exploration forces the
controller to explore, and so to approach the goal.

4the break point is around −1.7e−308.

IV. Choice of continuous reward function and
heterogeneous initial Q-values

In order to broaden the scope of our study, we propose
henceforth to enlarge the study by using first two different
continuous reward functions with uniform initial Q-values,
and secondly by initializing the action value function with
a goal bias function.

A. Reward function using progress estimators
First, we propose to study the use of a continuous

reward function instead of binary rewards. In this view and
to speed up the learning, some authors introduce reward
functions by using progress estimators [8] or potential-
based shaping [10]. Progress estimators provide a measure
of improvement relative to an objective. They do not
supply a complete information but only partial, goal-
specific “advice”. The aim of the learning process is to
maximize the progress function ϕ : S × A → R. For
instance, concerning the maze, the progress estimator can
be an assessment of the expected number of steps needed
to get to the goal from the new state s′, defined as
ϕ(s′, a) = d(s′, sg). d is the manhattan distance between
the new state s′ and sg. The aim of the controller in the
maze is to minimize this function and the parameters could
be then : {

r(s, a, s′) = −ϕ2 = −d2(s′, sg)
Qi = 0 (6)

Thus, the controller is less and less punished by approach-
ing the goal. The global policy is the shortest way toward
the goal. Given our maze, this reinforcement is spurious as
there are plenty of walls between the initial state and the
goal. In particular, it entails an unlearning phenomenon
after few trials. Indeed, if the robot was taken off toward
a dead end (that moves the robot closer to the goal),
it would get out of the trap only thanks to exploration
because states are more and more attractive toward the
goal. At the beginning, Q-values are near 0 so systematic
exploration is strong : going out of the trap is possible. But
after few trials, turning back is tantamount to choosing
a less attractive Q-value and will happen only if several
exploration actions follow one another, i.e. seldom.

So, both progress estimators and potential-based shap-
ing are risky. It’s better to use cautiously these approaches
insofar as they may lead to a pernicious behavior that
catches the system out.

B. Continuous reward function inspired by gaussian func-
tion

Consequently, we propose a continuous reward function
such that on the one hand, r is uniform for some states
far from the goal in order to avoid the unlearning phe-
nomenon, and on the other hand, there is a reward gradient
in a zone around the goal. We suggest the reward function
inspired by the gaussian function :

r(s, a, s′) = βe−
d(s′,sg)2

2σ2 (7)

Fig. 4. Maze experiments with reward function inspired by gaussian
function averaged over 20 independent runs. Steps to goal vs. trial

number. Qi = 100 ; r(s, a, s′) = 10e
− d(s′,sg)2

2σ2 .

Qi values are uniform, β adjusts the amplitude of the func-
tion and σ, the standard deviation, specifies the reward
gradient influence area. As a matter of course, “moving
round in circles” behavior must be avoided by choosing
Qi ≥ β

1−γ .
For the maze task, we have chosen the continuous

reward function Qi = 100 and β = 10. Fig. 4 shows the
unlearning phenomenon as from 80 trials with σ = 3.5 5.
Indeed, with such σ, the reward gradient influence area is
too large and includes few dead ends. On the contrary,
if the reward gradient influence area is only 6 steps
around the goal (σ = 2), there won’t be any unlearning
phenomenons and the learning process is accelerated.

Such a continuous reward function is adjustable in order
to avoid a harmful behavior. Anyway, the best approach
would be to influence fleetingly the learning process.

C. Goal Bias
In view of the importance of the action-value function

initialization, we propose as a matter of course to be
inspired by progress estimators in order to initialize the
action-value function with more precise information. In
this section, the reward function is the binary one given
by (3) with r∞ = 0 and rg = 1.

We are going to settle a correct goal bias function thanks
to our previous analysis. An interesting bias shall achieve
an adjustable state gradient and in addition, must avoid
the “moving round in circles” behavior. We suggest for
instance a gaussian goal bias function :

Qi(s, a) = βe−
d(s,sg)2

2σ2 + δ + Q∞. (8)

δ fixes the level of systematic exploration far from the goal,
β the amplitude of the bias and σ the bias influence area.

Concerning the maze, the bias is such that states near
the goal are more and more interesting a priori than
states far away from the goal. So δ and β must be chosen
very small compared to one (in order to avoid too much

5i.e. states 10 steps away from the goal have uniform r.

Fig. 5. Maze experiments with goal bias function averaged over
20 independent runs . Steps to goal vs. trial number with bi-
nary rewards. Random test is Qi = 0. Goal bias function is

Qi(s, a) = 0.001e
− d(s,sg)2

2×132 .

systematic exploration). Fig. 5 presents goal bias results on
the previous maze which are unambiguous. The goal bias
leads to a much faster learning process. It is worth noticing
that there is no problem concerning dead ends even if the
bias is wrong. Contrary to Sect. IV-B, the effect of the goal
bias function is transient. It advises the controller only at
the beginning of the learning process.

D. Conclusion
Both potential-based shaping and progress estimators

methods must be used cautiously to design a continuous
reward function. Consequently, we have proposed a con-
tinuous reward function inspired by a gaussian function
and whose reward gradient influence area is adjustable in
order to deal with risks. Anyway, the best solution is to
choose a suitable goal bias function that does not lead to
any problems. Our analysis helps the choice of a correct
goal bias function.

V. Experiments with the pendulum swing-up
task

Last of all, we validate our results on the continuous
space control task of a pendulum swinging upwards with
limited torque [13] (Fig. 6). The control of this one degree
of freedom system is non-trivial if the maximal output

Fig. 6. A pendulum with limited torque. The dynamics were given
by θ̇ = ω and ml2ω̇ = −µω + mglsinθ + u. The physical parameters
were m = l = 1, g = 9.8, µ = 0.01, and umax = 5.0. The learning
parameters were γ = 0.97, α = 0.1.

Fig. 7. Comparison of number of trials before one successful
trial. The simulation lasted 10000 trials averaged over 10
independent runs. bar1: {binary reward function ; Qi(x) = 0}
bar2: {binary reward function ; Qi(x) = 0.1}

bar3: {binary reward function ; Qi(x) = e
− θ2

2×0.252 + 0.1 }
bar4: {R(x, u,x′) = cos(θ′) ; Qi(x) = 0}

bar5: {R(x, u,x′) = e
− θ′2

2×0.252 ; Qi(x) = 10 }

bar6: {R(x, u,x′) = e
− θ′2

2×0.252 ; Qi(x) = 11 e
− θ2

2×0.252 + 0.1}

torque umax is smaller than the maximal load torque mgl.
The controller has to swing the pendulum several times to
build up enough momentum to bring it upright and has to
decelerate it early enough to prevent it from falling over.

To implement the tabular Q-learning, we have chosen
a two-dimensional state space x = (θ, ω). 30 × 30 × 9
bases were used for the state-action space (θ, ω, u). Each
trial was started from an initial state x(0) = (π, 0.1) and
lasted 20 seconds. The sample time is 0.03 seconds. As a
measure of the swing-up performance, we have chosen tup

as the time in which the pendulum stayed up (|θ| < π/4).
A trial was regarded as “successful” when tup is superior
to the tup average of the 1000 last trials.

We tested the performance of the Q-Learning algorithm
depending on the shape of the reward function and initial
Q-values (Fig. 7). In all cases, the tup average after 10000
trials is around 14 seconds.

We tested first the binary reward function

R(x, u,x′) =
{

1 if |θ′| < π/4
0 otherwise (9)

with different uniform initial Q-values in order to observe
various behaviors at the beginning of the learning. With
Qi = 0, the task was really difficult to learn (bar1) be-
cause the behavior far from the goal is random. A better
performance concerning the binary reward and uniform
Qi was observed with Qi > 0 (bar2), i.e. the followed
behavior when |θ| > π/4 is systematic exploration. The
policy drives the controller to unexplored areas which are
assigned higher Q-values, i.e. the controller is spurred on
to swing the pendulum upwards. Systematic exploration
is the best strategy in this specific case.

TABLE I
Better choices of reward function and initial Q-values for goal-directed RL robot tasks.

Binary reward function for discrete state space
Continuous reward function for continuous state

space

r(s, a, s′) =

{
rg if s′ = sg

r∞ else
Choice of rg and r∞ : rg ≥ r∞

1−γ
r(s, a, s′) = βe

− d(s′,sg)2

2σ2

Choice of uniform initial Q-values : Qi = r∞
1−γ

+ δ Choice of uniform initial Q-values : Qi = β
1−γ

Choice of goal biased initial Q-values :

Qi(s) = βe
− d(s,sg)2

2σ2 + δ + r∞
1−γ

Choice of goal biased initial Q-values :

Qi(s) = β(1 + 1
1−γ

)e
− d(s,sg)2

2σ2 + δ

δ ≥ 0 fixes the level of systematic exploration far away from the goal and β > 0 adjusts the amplitude of the gradient

σ specifies the gradient influence area and γ is the discount factor, s is the previous state, s′ the new state, sg the goal state

Then, we tested goal bias with binary rewards, so
Qi(x) = βe−

θ2

2σ2 + δ. Given our previous results, it is
obvious that the goal bias function shall favor systematic
exploration when |θ| > π/4, so we chose δ = 0.1,
β = 1 and σ = 0.25 (bar3). Goal bias does not improve
obviously the learning.

The system is a continuous space control task so the
classical reward [13] is given by the height of the tip of
the pendulum, i.e., R(x, u,x′) = cos(θ′) and the arbitrary
Qi value is 0 (bar4). Thus, the pendulum moves round in
circles when |θ| < π/2 and explores systematically when
|θ| > π/2 at the beginning. The result is disappointing.

We applied our continuous reward function (7) with
Qi = 10 and β = 1. The distance is defined as
d(x’,xup) = θ′ with x’ the new state and xup the goal
state. So the continuous reward function is :

R(x, u,x′) = e−
θ′2
2σ2 (10)

σ = 0.25 so that the reward gradient influence area is only
around |θ| < π/4. Results (bar5) are near the case of a
binary reward and systematic exploration (bar2).

Lastly, we tried goal bias with continuous reward
function. The reward function (10) is the continuous
equivalent to the binary one so we have kept this
one. The reward function is continuous, it is the same
for Qi which must be higher than R(x)

1−γ . So goal bias

is Qi(x) = β(1 + 1
1−γ)e−

d2

2σ2 + δ. We have kept previous
choices: δ = 0.1, β = 1 and σ = 0.25. This last
simulation (bar6) is the better performance concerning the
pendulum, with a learning speed under 1000 trials.

VI. Conclusion

In this paper, we have presented some rules for speeding
up RL within the context of goal-directed robot tasks. The
main feature of our analysis is that the choice of the reward
function and initial Q-values can have a tremendous im-
pact on the performance of RL algorithms. Notably, some
values of Qi lead to a detrimental behavior that must be

avoided. Thanks to our experiments, we have confirmed
the presence of bounds which mark out diverse behaviors.
It is worth noticing that the farther Qi is from the bounds,
the more the characteristic behaviors are distinguished.

Moreover, we advise to be wary of potential-based
shaping or progress estimators that may entail pernicious
behavior. A safer adjustable continuous reward function is
also suggested. At last, thanks to our conditions on the
initial Q-values, we developed a generic goal bias function,
whose main feature is to be transient. Table I recapitu-
lates the better choices of reward function and initial Q-
values for goal-directed RL. We believe that our method
shows the promise of implementing more efficiently RL
algorithms on real goal-directed robot tasks.

References

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. The MIT Press, Cambridge, 1998.

[2] C. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, Cambridge University, Cambridge, England, 1989.

[3] S. Iida, M. Kanoh, S. Kato, and H. Itoh,“Reinforcement learning
for motion control of humanoid robots,” in Proc. of IROS,
Sendai, 2004, pp. 3153–3157.

[4] S. Waslander, G. Hoffmann, J. Jang, and C. Tomlin, “Multi-
agent quadrotor testbed control design: Integral sliding mode
vs. reinforcement learning,” in Proc. of IROS, Edmonton, 2005.

[5] G. Laurent and E. Piat, “Learning mixed behaviours with
parallel q-learning,” in Proc. of IROS, Lausanne, 2002.

[6] W. Smart and L. Kaelbling, “Effective reinforcement learning
for mobile robots,” in Proc. of ICRA, 2002, pp. 3404–3410.

[7] S. Behnke and M. Bennewitz, “Learning to play soccer using
imitative reinforcement,” in Proc. of the ICRA Workshop on
Social Aspects of Robot Programming through Demonstration,
Barcelona, April 2005.

[8] M. J. Mataric, “Reward functions for accelerated learning,” in
Proc. of the 11th ICML, 1994, pp. 181–189.

[9] J. Randlov and P. Alstrom, “Learning to drive a bicycle using
reinforcement learning and shaping,” in Proc. of the 16th ICML,
1998, pp. 463–471.

[10] E. Wiewiora, “Potential-based shaping and Q-value initializa-
tion are equivalent,” Journal of Artificial Intelligence Research,
vol. 19, pp. 205–208, 2003.

[11] G. Hailu and G. Sommer, “On amount and quality of bias
in reinforcement learning,” in Proc. of the IEEE International
Conference on Systems, Man and Cybernetics, Tokyo, Oct.
1999, pp. 1491–1495.

[12] C. Watkins and P. Dayan, “Technical note: Q-learning,” Ma-
chine Learning, vol. 8, pp. 279–292, 1992.

[13] K. Doya, “Reinforcement learning in continuous time and
space,” Neural Computation, vol. 12, no. 1, pp. 219–245, 2000.

