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Abstract

The article focuses on decentralized reinforcement learning (RL) in
cooperative multi-agent games, where a team of independent learning
agents (ILs) try to coordinate their individual actions to reach an op-
timal joint action. Within this framework, some algorithms based on
Q-learning are proposed in recent works. Especially, we are interested
in Distributed Q-learning which finds optimal policies in determinis-
tic games, and in the Frequency Maximum Q value (FMQ) heuristic
which is able in partially stochastic matrix games to distinguish if
a poor reward received for the same action are due to either mis-
coordination or to the noisy reward function. Making this distinction
is one of the main difficulties to solve stochastic games. Our objective
is to find an algorithm able to switch over the updates according to
a detection of the cause of noise. In this paper, a modified version
of the FMQ heuristic is proposed which achieves this detection and
the update adaptation. Moreover, this modified FMQ version is more
robust and very easy to set.

1 Introduction

In recent years there has been increased interest in decentralized approaches
combined with artificial intelligence to solve complex real world problems.
Machine learning is a popular approach to study multi-agent systems (MAS)



and a decentralized point of view offers several potential advantages as speed-
up, scalability and robustness [11]. We focus on learning in cooperative
multi-agent systems [8], where multiple agents are cooperating to solve a
joint task. Especially, we are interested in learning in MAS thanks to rein-
forcement learning (RL) methods, where an agent learns by interacting with
its environment, using a scalar reward signal called reinforcement as perfor-
mance feedback [12]. Over the last decade, many approaches are concerned
with the extension of RL to MAS [2].

In this framework, Claus & Boutilier [3] distinguish two cases of rein-
forcement learners : the case of agents that get information about their own
choice of action as well as their partners’ choices, called “joint action learn-
ers” (JALs), and the case of agents which only know their own action, called
“independent learners” (ILs). Even though it would be “easier” for a JAL to
solve a joint task than with only individual actions, we focus on ILs which is
a more realistic assumption and don’t require any communication between
agents. Moreover, given that ILs don’t get information about all of the other
agents’ actions, they bring the benefit in Q-learning variants of a state-action
space size independent of the number of agents. The main difficulty with ILs
is the multi-agent coordination problem : how to make sure that all ILs co-
herently choose their individual action such that the resulting joint action is
optimal ?

Over the last years, many algorithms addressing this problem of coordi-
nation in cooperative matrix games (MG) have been proposed. Some of them
find optimal policies in deterministic cooperative MG where mis-coordination
is associated with high penalties, e.g. the Distributed Q-learning [7]. How-
ever, they fail in stochastic MG where the fundamental difficulty is to make
distinctions between the noise induced by the stochastic reward function and
by other agents’ evolving behaviour. Thus, it could be interesting to detect if
the game is deterministic and then to use a fitted algorithm as the Distributed
Q-learning, and otherwise to switch over the algorithm. In this perspective,
we took an interest in the Frequency Maximum Q value (FMQ) heuristic
[5, 6]. FMQ is able in partially stochastic MG to distinguish if the different
rewards received for the same action are due to either the other agents or to
the noisy reward function. This paper presents a study of some limitations
and improvements of the FMQ.

Our paper is structured as follows: we first introduce the framework of
fully cooperative repeated matrix games and common testbeds for the study
of coordination of agents. We then review related works dealing with RL



algorithms for ILs. Finally, we investigate some issues of the FMQ and
suggest a modified FMQ more robust and easy to set.

2 Fully cooperative repeated matrix games

The studies of learning algorithms in MAS are based on game theory and
more particularly on repeated games. In this section, we first setup this
framework. Then, we present widely used testbeds for studying RL in re-
peated matrix games.

2.1 Definition

A matriz game' (MG) is a multiple-agent, single state framework. It is
defined as a tuple < m, Ay, ..., A, Ry, ..., R,, > where m is the number of
players, A; is the set of actions available to player i (and A = A; x ... X 4,
is the joint action space) and R; : A — R is player i’s payoff function.

If Ry =...= R,, = R, the MG is fully cooperative?. We are interested in
repeated games which consist of the repetition of the same MG by the same
agents. Among matrix games, bi-matrix games are often used to represent
cooperative coordination problems in the 2-agents case.

2.2 Cooperative matrix games

Table 1 shows four cooperative MG interesting for the study of the coor-
dination of two agents. The Climbing game and the Penalty game have
been introduced in [3] and partially and fully stochastic variations of the
Climbing game, proposed in [5]. Each agent has 3 actions and the table
specifies the joint rewards. Fach of these games is challenging due to mis-
coordination penalties. In the Climbing game, the optimal joint action is
(a,a) but if an agent chooses its individual optimal action a when the other
agent chooses action b, a severe penalty is received. However, there are no
mis-coordination penalties associated with action ¢, potentially making it
tempting for the agents. In the stochastic variations of the Climbing game,
the agents confront the situation of a noisy reward function. The difficulty
is to distinguish if the poor rewards received for the same action are due to
either mis-coordination or to the noisy reward function. For instance, even
if the highest reward of 14 is sometimes received when executing b, an agent

lalso called strategic game
2also called team game



(a) Climbing game (b) Partially stochastic Climbing game

Agent 2 Agent 2
a b ¢ a b ¢
al| 11l -30 0 al| 1l -30 0
Agent1 b |-30 7 6 Agent 1 b |-30 14/0 6
¢ 0 0 5 ¢ 0 0 5
(c) Fully stochastic Climbing game (d) Penalty game
Agent 2 Agent 2
a b c a b ¢
a | 10/12 5/-65 8/-8 all0 0 k
Agent 1 b | 5/-65 14/0 12/0 Agentl1 b | 0 2 0
c| 88 12/0 10/0 clk 0 10

Table 1: Cooperative matrix games. In stochastic games, the probability of
each reward is 50%.

must learn that the average reward for the joint action (b,b) is lower than
that of (a,a).

In the Penalty game, k is usually chosen inferior to 0. This game introduces
another mis-coordination issue due to the presence of two optimal joint ac-
tions (a, a) and (¢, ¢): simply choosing its individual optimal action does not
guarantee that the other agent will choose the same optimal.

3 Related works in Matrix Games

In this section, related works dealing with the coordination of agents thanks
to RL algorithms in fully cooperative repeated games are reviewed, with an
emphasis on research dealing with Q-learning [14] and Q-learning variants
for ILs. In the following methods, each ILs builds its own Q)-table whose size
is independent of the agents number and linear in function of its own actions.
The task is for the agents to independently choose one action with the goal
of maximizing the reward that they receive.

3.1 Decentralized Q-learning

Q-learning [14] was one of the first algorithm applied to multi-agent environ-
ments [13]. In the framework of MG, Claus & Boutilier [3] reduce Q-learning’s
update equation to :

Q(a) — (1 - )Q(a) + ar (1)

where a is the agent’s chosen action, r the reward received, Q)(a) the action-
value and « €]0; 1] the learning rate.



The agent individual policy 7 : A — [0, 1] returns a probability distribution
over individual actions. At time k,

Va € A, P(a, = a) =m(a) (2)

The policy m can be computed thanks to a Boltzman distribution :

e
m(a) = Q) (3)

2. €

u€A

where 7 is the temperature parameter that decreases the amount of random-
ness as it approaches zero. This action decision is called the softmax strategy.
The e-greedy strategy is another common action selection method in which
an agent chooses the best action according to its policy with probability
(1 —¢) (exploitation mode), and otherwise selects a uniformly random action
with probability € (exploration mode).

As for the decision strategy, Claus & Boutilier [3] use softmax strategy
with a temperature parameter 7 decreasing over time so that the exploitation
probability increases. Notably, they try to compute an equilibrium point by
continuously reducing the exploration frequency, so as to avoid concurrent
exploration. Anyway, with such a strategy, the key difficulty is that con-
vergence relies on the use of decaying exploration and so convergence to an
optimal equilibrium with decentralized Q-learning is not ensured. Decaying
the value of the temperature is also investigated in [4] and in §4.1.

3.2 Distributed Q-learning

Lauer & Riedmiller [7] introduce “optimistic independent agents”: they ne-
glect in their update the penalties which are often due to a non-coordination
of agents. Thus the evaluation of an action in MG is the maximum reward
received. In the case of multiple optimal joint actions in a single state (for
instance the Penalty game), an additional procedure for coordination is used.
The central idea is to update the current policy 7w only if an improvement
in the evaluation values (R,,4.) happens. Distributed Q-learning associated
with this coordination method is in Algorithm 1. It is proved that this al-
gorithm finds optimal policies in deterministic environments for cooperative
multi-stage MG. Anyway this approach does not converge in stochastic en-
vironments.



Algorithm 1: Distributed Q-learning for Matrix Game for agent ¢

1 begin
2 Initialization : Va € A, Rpz(a) < 0, m(a) arbitrarily
3 repeat
4 Select a according to the e-greedy action selection method
5 Apply a and observe reward r
6 if r > Ry0.(a) then
7 Riaz(a) < r
1if a=b
8 LVbeA ﬂ’(b)H{Oelse
9 until stop
10 end

3.3 Hysteretic Q-learning

In [1], two learning rates o and (3 are used for the increase and decrease
rates of (Q-values in order to overcome the issue of coordination in MAS. The
update equation in MG is :

(1 —a)Q(a) +ar if r> Q(a)
Qa) { (1—75)Q(a) + Or else (4)

The idea is that agents should not be altogether blind to penalties at the
risk of staying in sub-optimal equilibrium or mis-coordinating on the same
optimal joint action. But they are chiefly optimistic to reduce oscillations in
the learned policy (a > ).

3.4 Lenient Learners

Panait et al. [9] are interested in varying the degree of optimism of the
agents as the game is repeated. Indeed, being optimistic may be useful
at early stages of learning to identify promising actions. In case of lenient
learners, agents are exploring at the beginning so most of selected actions
are poor choices and ignoring penalties is then justified. Nevertheless, it may
lead to an overestimation of actions, especially in stochastic domains where
rewards are noisy. And once agents have explored, it becomes interesting to
achieve accurate estimation of actions. So the agents are initially lenient (or
optimistic) and the degree of lenience concerning an action decreases as the
action is often selected. The main drawbacks of this method is that a large
number of parameters must be set.



Algorithm 2: FMQ for Matrix Game for agent ¢

1 begin
2 Initialization : Va € A, Q(a) < 0, Rpqez(a) — 0, C(a) <0
3 Cr,,..(a) <=0, F(a) — 1, E(a) < 0, 7 arbitrarily
4 repeat
5 Select a following the policy 7
6 Apply a and observe reward r
7 C(a) « C(a)+1
8 Qa) = (1 -a)Q(a) + ar
9 if 7 > Ry40(a) then
10 Ryaz(a) < r
11 Cr,,..(a) —1
12 else if r = R4, (a) then
13 | Cr,..(a) = Cg,,. (a)+1
14 F(a) < 7CR8(‘;)(Q)
15 E(a) — Q(a) + ¢ x F(a) X Ryqez(a)
E(
Vbe A, w(b) «— %
16 e
17 until stop
18 end
3.5 FMQ

Kapetanakis & Kudenko [5, 6] bias the probability of choosing an action with
the frequency of receiving the maximum reward for that action. In their al-
gorithm, the evaluation of an action F is the )-value added to an heuristic
value, taking into account how often an action produces its maximum corre-
sponding reward. The evaluation of an action a is defined as :

E(a) = Q(a) + ¢ x F(a) X Ryqa(a) (5)

where R,,q.(a) is the maximum reward received so far for choosing action a,
F(a) is the frequency of receiving the maximum reward corresponding to an
action, and c is a weight which controls the importance of the FMQ heuristic
in the evaluation.

The Frequency Mazimum @ value (FM@) algorithm is the Algorithm 2. C(a)
holds the number of times the agent has chosen the action a in the game and
CR,.. (@) the number of times that the maximum reward has been received
as a result of playing a.



Decentralized | Distributed | Hysteretic | FMQ
Q-Learning | Q-Learning | Q-Learning
Climbing game 12% 100% 100% 100%
Penalty game 64% 100% 100% 100%
(k= —100)

Partially Stochastic - ™% 60% 100%
Climbing game

Fully Stochastic - - - 21%
Climbing game

Table 2: Percentage of trials which converged to the optimal joint action.

3.6 Conclusion

To conclude, we compare the performance of some of these algorithms in co-
operative MG (Table 1). A trial consists of 5000 repetitions of the game. At
the end of each trial, we determine if the greedy joint action is the optimal
one. We performed 500 trials. Results were obtained with the best chosen
action selection strategy in order to achieve the best results of convergence.
Table 2 brings together the percentage of trials converging to the optimal
joint action according to the algorithm and the type of cooperative MG.
All the algorithms, except the Decentralized Q-learning, converge in deter-
ministic games. FMQ is the only one to overcome the difficulty of partially
noisy rewards. Thus, the advantage of the FMQ is to be able to make the
distinction between the noise due to the stochastic rewards and the noise
due to the other agent. This heuristic is an interesting way to detect the
stochasticity of a game. However, a large number of parameters must be set
and convergence relies on the choice of these parameters. That’s why FMQ
improvements are presented in the next section.

4 A study of FMQ in cooperative MG

FMQ heuristic performs well in cooperative matrix games where the joint
reward is partially noisy. However, there remain questions towards under-
standing exactly how the exploration strategy influences the convergence.
The convergence also relies on the choice of the weight parameter. In this
section, we investigate these issues in details and suggest modifications to
the FMQ algorithm to overcome these limitations. The objective is to make
the algorithm more robust to the choice of the exploration strategy and to get
rid of the choice of the weight parameter c.



4.1 The issue of the exploration strategy

Decaying the exploration rate (e or 7) in an appropriate manner is a pop-
ular choice in single-agent method, especially when using on-policy RL al-
gorithms, such as SARSA, in order to ensure convergence to the optimal
(deterministic) policy [10]. In practice, however, constant exploration rates
are used in single-agent method.

In multi-agent method, Claus & Boutilier [3] decay the value of the tempera-
ture to avoid concurrent exploration, but this is without ensuring convergence
to an optimal equilibrium (§3.1). For their part, Kapetanakis & Kudenko [5]
use with their FMQ heuristic an exponentially decaying temperature func-
tion :

&

Tk =€ F X Trmaz + Too (6)

where k is the number of repetitions of the game so far, § controls the rate of
the exponential decay, 7,,q. and 7., are resp. the value of the temperature at
the beginning and at the end of the trial. However, using such a temperature
function requires to choose in an appropriate manner all the parameters. For
instance, in the case of heterogeneous cooperative multi-agent systems [6],
changing just one setting in these parameters can turn a successful experi-
ment into an unsuccessful one. This instability is also more important in
multi-stage games.

In Figure 1, an exponentially decaying temperature is plotted in function
of the number of repetitions. The other curves are the average rewards and
their dispersion received by FMQ agents using this temperature function and
the softmax strategy in the Climbing game. During a first phase, the average
rewards remain constant; the agents choose all possible joint actions. This is
the phase of exploration. Then, during the exponential decay of 7, the agents
learn to coordinate until the temperature reaches some lower limit where
agents are following their greedy policy. This is the phase of convergence
or coordination. Both of these phases of exploration and coordination are
necessary for the FMQ to converge. For instance, with a constant exploration
rate € = 0.1, the FMQ algorithm converges to the optimal joint action in the
Climbing game with a probability of only 23%. So the FMQ algorithm is not
robust to the choice of the exploration strategy.

This link between convergence and exploration is due to an instability of
the frequency of receiving the maximum reward F' face to the exploration.
For instance in the Climbing game?, the action a can be chosen many times

3an agent has 3 actions a, b and ¢
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Figure 1: Average rewards received in the Climbing game by FM(Q agents
(c = 10) with 7 = €096k % 499 4+ 1.

by an agent but without leading to its maximum reward. So C(a) is high.
Then, when the maximum reward is received for the action a (because of
an exploration step), Cr,..(a) is reset and thus, the frequency F(a) « %
drops. F'(a) might then be inferior to F'(b) or F(c) and the action ¢ might
be chosen only in exploration step. So the convergence is not effective and
many exploration steps are necessary so that the frequency F'(a) may in-

crease enough for the coordination on the joint action.

In order to obtain an algorithm more robust to the exploration, the
counter C'(a) must be reset to 1 when a new maximum reward is received
for the action a. Thus, the frequency is also reset to 1 and will only decrease
in case of mis-coordination because of an exploration step of one agent or in
case of noisy reward. Besides, we introduce a recursive computation of the
frequency:

(1 —ap)F(a)+af if 7= Rya(a)
Fla) { (1-— Q;)F(a) else]: (7)

where oy is the learning rate of the frequency.
With this modified version of FMQ), i.e. a reset and a recursive compu-

tation of the frequency F' and the e-greedy action-selection method, FMQ
agents converge with a probability of 100% to the optimal joint action in

10



the deterministic and partially stochastic Climbing game (with parameters
a=0.1, af =0.05, c =10 and € = 0.1). This version of FMQ with a con-
stant exploration rate performs as well in the Climbing game as the initial
version with an exponentially decaying temperature function.

The improvement concerns the fact that this modified version of FMQ is
more robust to the exploration, but it does not do any better than the original
formulation. This modified algorithm converges with a well chosen decay-
ing temperature and with a constant exploration rate. Anyway, the second
choice requires less parameters to set and is less inclined to instability due
to the exploration. The only care concerns a sufficient number of repetitions
of the game according to the constant exploration rate to ensure complete
exploration of the action space.

4.2 The issue of the weight in the FMQ heuristic

Kapetanakis & Kudenko [5] introduce a weight ¢ to control the importance
of the FMQ heuristic in the evaluation of an action (equation 5). But the
convergence relies on the value of this parameter, as shows experiments per-
formed in [5]. In order to overstep this issue, we propose another heuristic
evaluation.

We notice that R,,., 1S in most cases an overestimation of the evaluation
of an action, except in deterministic games where it is the exact maximal
value of an action. And (@ is an estimation of the average rewards, including
poor values due to mis-coordination. So the evaluation E must be equal to
R0 when the game is deterministic, i.e. when the frequency of receiving
the maximum reward corresponding to an action is equal to 1. Otherwise,
E is inferior to R,,... We propose to use the following evaluation of action :

E(a) = (1= F(a)) x Q(a) + F(a) X Rynaa(a). (8)

When a new maximum reward for an action is received, the agent is then
optimistic concerning this action. Then, if the reward is noisy, it becomes
less optimistic and chooses its action according to )-values. The principle
is then closest in spirit to lenient learners [9] (§3.4), in that the degree of
optimism of the agents can change. But concerning lenient learners, the de-
gree of optimism inevitably decreases, although here, if the agents manage to
coordinate in a deterministic environment, they stay optimistic. So they are
bound to converge to the optimal joint action in deterministic environment,
given that they follow the Distributed Q-learning. The additional procedure

11



for coordination of Lauer & Riedmiller [7] is also used, with an update of the
current policy 7 only if an improvement in the evaluation values (E) happens.

Results on cooperative matrix games with the modified version of FMQ
(Algorithm 3) are in Table 3 (¢ = 0.1, @ = 0.1 and oy = 0.05). This modified
version of FMQ with an on-line computation of the frequency of receiving
the maximum reward and a constant exploration rate performs as well as the
initial version in the Climbing game and in its partially stochastic version.
But it does not overcome the issue of strongly noisy reward functions (only
35% of trials converge to the optimal joint action). However, we would
not expect our modified FMQ version to have any positive impact on the
convergence results in the fully stochastic version; we would only expect to
obtain a more robust algorithm.

Algorithm 3: Modified FMQ for Matrix Game for agent ¢

1 begin
2 Initialization :
3 forall actions a = 1..N do
4 L Q(a) «— 0, Rypaz(a) < 0, F(a) «— 1, E(a) < 0, w(a) arbitrarily
5 repeat
6 Select a according to the e-greedy action selection method
7 Apply a and observe reward r
8 Qa) — Qa)(1 —a) +ar
9 if r > Ry0.(a) then
10 Riyaz(a) < r
11 F(a) —1
12 else if r = R4, (a) then
13 ‘ F(a) — (1 —ay)F(a) + ay
14 else
15 | F(a) « (1 —ay)F(a)
16 E(a) — (1 = F(a)) x Q(a) + F(a) X Ryaz(a)
o if E(ar%‘ér[l]ax m(u)) # max E(u) then
Select a random action a4, € argmax E(u)
18 uelU
1 if b= amas
19 Vb€ A m(b) — { 0 else
20 until stop
21 end

12



Decentralized | Distributed | Hysteretic | FMQ | Improved

Q-Learning | Q-Learning | Q-Learning FMQ

Climbing game 12% 100% 100% 100% 100%

Penalty game 64% 100% 100% 100% 100%

(k= —100)

Partially Stochastic - % 60% 100% 100%
Climbing game

Fully Stochastic - - - 21% 35%
Climbing game

Table 3: Percentage of trials which converged to the optimal joint action.

5 Conclusion

In this paper, we are interested in the coordination of agents in cooperative
matrix games. In this framework, we reviewed some algorithms. Especially,
we study FMQ heuristic whose main interest is its ability to distinguish if
the different rewards received for the same action are due to either the other
agent or to the partially noisy reward function. We have removed some lim-
itations of the FMQ and proposed in this paper a modified FMQ algorithm.
An on-line computation of the frequency of receiving the maximum reward
is suggested as well as a novel evaluation of the heuristic. The main idea
of this new heuristic is that the agent is initially optimistic and the degree
of optimism will decrease in advantage of Decentralized Q-learning if the re-
ward is noisy. The advantage is to be robust to the exploration and to have
only three parameters very easy to set.

Changes made to the FMQ algorithm lead to the same convergence results
than the original formulation, but it lives up to ours’ expectations of a more
robust algorithm face to the choice of the exploration strategy and to the
choice of parameters. However, the modified FMQ version is only proposed
for cooperative matrix games. So we are currently investigating an extension
of this new version of FMQ to multi-stage games.
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