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Parallel Continuum Robots (PCR) have several advantages over classical articulated
robots, notably a large workspace, miniaturization capabilities and safe human-robot
interactions. However, their low accuracy is still a serious drawback. Indeed, several
conditions have to be met for PCR to reach a high accuracy, namely: a repeatable
mechanical structure, a correct kinematic model, and a proper estimation of the model’s
parameters. In this article, we propose a methodology that allows reaching a micrometer
accuracy with a PCR. This approach emphasizes the importance of using a repeatable
continuummechanism, identifying themost influential parameters of an accurate kinematic
model of the robot and precisely measuring them. The experimental results show that the
proposed approach allows to reach an accuracy of 3.3 µm in position and 0.5 mrad in
orientation over a 10mm long circular path. These results push the current limits of PCR
accuracy and make them good potential candidates for high accuracy automatic
positioning tasks.
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1 INTRODUCTION

Parallel Continuum Robots (PCR) are a recent and rising type of robots introduced in (Bryson and
Rucker, 2014). They are composed of flexible slender elements arranged in parallel and linked to a
platform. Resulting robots present a higher rigidity than soft robots while keeping most of their
advantages. This structure provides higher safety than common industrial robots thanks to the
flexibility of the PCR’s limbs. For instance, Campa et al. proposed a planar PCR to perform safer
collaborative robot applications (Campa et al., 2019). The flexibility of the limbs provides large
continuous deformations that allow for a large workspace. Yang et al. proposed a continuum version
of the Delta robot whose continuous joints allow larger rotations than usual joints (Yang et al., 2018).
Flexible elements allow to reduce the number of joints and eliminate the mechanical plays (Black
et al., 2018). Reducing the number of joints and mechanical parts also facilitates the miniaturization
of the designed robot. For example, the continuum Steward-Gough platform introduced in (Bryson
and Rucker, 2014) had its dimensions reduced in order to create a surgical PCR whose platform (a
gripper) is around 10 mm diameter (Orekhov et al., 2017). This small prototype illustrates the
interest and the capability of PCR to perform applications inside confined space (like the human
body) where instrumentation and sensor-based controls are difficult to implement. To execute those
applications, an accurate PCR could be a solution. However, the reachable accuracy of those
structures is still an open question which needs more investigations. The objective of this paper is to
propose a methodology to reach a high accuracy with PCR by measuring, identifying and
understanding the influence of the different parameters, and have an estimate of a typical level
of accuracy that a PCR can reach.
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The accuracy corresponds to the difference between
commanded poses and the barycenter of attained ones (ISO
9283, 1998) in position and orientation. A high accuracy
enables to position the end-effector of the PCR thanks to its
model and allows to successfully perform automated tasks. The
accuracy of a robot depends on three key elements: its
repeatability, the correctness of its model and the knowledge
of the model’s parameters. The repeatability corresponds to the
deviations of the reached poses for a same command, and mainly
depends on robot’s design, the quality of its mechanical structure
and its actuation system. A repeatable robot is essential to have a
predictable behavior and thus to model it. The modeling of
continuum robots appears especially challenging because of
their virtually infinite number of Degrees-of-Freedom (DoF)
and their highly nonlinear behavior due to the large
deformations. Two modeling approaches of parallel continuum
robotics are widespread in the literature: physical-based models
and black-box models such as neural networks. Using an artificial
neural network, Wu et al. reached a positioning accuracy of
5 mm. One of the drawbacks in using black-box models is that
they could not identify why the positioning accuracy was low
(Wu et al., 2017). This is one of the reasons why most of the
studies use physical-based models.

We can distinguish two categories of physical-based models:
high fidelity distributed parameter models and low fidelity
parameter models (Rone and Ben-Tzvi, 2014). The low fidelity
parameter models use strong hypothesis to reduce the number of
parameters and to facilitate the modeling and the identification of
its parameters. For instance, constant curvature models represent
continuum deformations by considering that flexible element
shapes are circle arcs (Nuelle et al., 2020; Lilge et al., 2021). Those
approaches are interesting for their simplicity but seem not
suitable for high positioning accuracy. For this reason,
physical-based models with high fidelity distributed parameters
and variable curvature assumption are preferred. Depending on
the structure, Cosserat-rod-based models (Trivedi et al., 2008;
Orekhov et al., 2017; Till and Rucker, 2017; Black et al., 2018) or
Kirchhoff-rod-based ones (Takano et al., 2017; Altuzarra et al.,
2019; Altuzarra and Merlet, 2019; Campa et al., 2019) gained
consensus because of their ability to predict the shape and forces
of the rods. In the case of tendon-actuated continuum structures,
Rao et al. proposed guidelines to choose a model depending on
the targeted application (Rao et al., 2021). Such guidelines do not
currently exist for parallel continuum structures.

In addition to the modeling, the measurement and the
identification of the model’s parameters are also important.

TABLE 1 |Mean orientation APθ and positioning accuracy APP (in percent of the nominal or mean dimension of the continuum flexible segment) for different PCR designs.

Design Image DoF Structure Models Calibration APP (%) APθ (°)

Orekhov et al. (2016) 6 6 PF Cosserat No 2.8 3.81

Yang et al. (2018) 3 3PFF Cosserat No 0.1 -

Wu et al. (2017) 3 Multi Neural Network No 0.43 -

Wu and Shi (2019) Constraint Cosserat Yes 0.8 -

Nuelle et al. (2020) 3 3PFR Constant Curvature Yes 1.4 1.1
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Indeed, to get an accurate prediction of the robot’s behavior, the
model’s parameters need to be close to their real values. To
address this issue, robot calibration is usually performed.
However, as Wu et al. pointed out, the calibration of PCR is
more complex than for regular parallel robots (Wu and Shi,
2019). One example is the absence of an analytical model. This
complexity generally conducts to choose a simpler model to
facilitate the identification step (Dehghani and Moosavian,
2013) or to measure the parameters rather than identifying
them (Orekhov et al., 2016). The chosen model, the
measurement and the identification of its parameters have a
strong and deeply intertwined impact on the robot’s accuracy.

Recent studies quantified the accuracy of several PCR that are
gathered inTable 1. Even if it is difficult to compare them because
of their different designs, those values give an overview of the
expected reachable accuracy of current PCR using different
models. To be more representative to the PCR’s design, the
positioning accuracy is generally expressed in percent of the
nominal or the mean dimension of the continuum flexible
segment. For example, Orekhov et al. obtained a mean
positioning accuracy of 2.8% (1.19 mm) and a mean
orientation accuracy of 3.81° after identifying extrinsic
parameters of a 6-Degrees-of-Freedom (DoF) robot (Orekhov
et al., 2016). The accuracy is interesting for a spatial PCR even if it
is limited by the actuation system whose positioning accuracy is
about 0.1 mm. The actuation system is also one of the main
uncertainty sources for the positioning accuracy calculated from
the data presented in (Yang et al., 2018). In the studies ofWu et al.
(Wu and Shi, 2019; Wu et al., 2017), several reasons were pointed
out like the small construction and assembly tolerances or the
friction forces that were not took into consideration. Nuelle et al.
proposed a study of a tendon-actuated planar PCR and reached

an accuracy of 1.4% (1.8 mm) after identifying all model’s
parameters thanks to a calibration process (Nuelle et al.,
2020). The shown accuracy was limited by the constant
curvature approach and by the actuation and the robot design,
which suffer from gear backlash and static-friction.

To address the challenge of getting accurate PCR, the
proposed approach consists in five key elements. The first one
consists in using a repeatable PCR. The robot recently introduced

FIGURE 1 | Picture of the XYΘ parallel continuum robot.

FIGURE 2 | Kinematic diagram of the 3-PF planar Parallel Continuum
Robot.
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in (Mauzé et al., 2020) was able to provide an outstanding
repeatability of 9.13 nm in position and 1.2 µrad in
orientation. Choosing a planar architecture allows using a very
resolute and long range multidimensional measurement system
which facilitates the understating of the proposed methodology.
Thanks to its mechanical structure, this robot seems suitable to
study the accuracy reachable by PCR. This three DoF XYΘ planar
parallel continuum is illustrated in Figure 1. The second point is
the use of a correct mechanical model. The measurement of the
model’s parameters is facilitated by the PCR design which also
anticipates the calibration process. That is why fiducial markers,
third element of the proposed methodology, are introduced.
Those fiducial markers, placed at specific locations of the PCR,
enable to efficiently measure the nominal values and to estimate
the uncertainties of the different models’ parameters. The fourth
element is a sensitivity analysis which coupled with the
uncertainties allows to determine the most influential
parameters. The last key point is the calibration process of
the robot.

The next section presents the model of the PCR and the
sensitivity analysis. This analysis enables to understand the role of
each parameter and to identify the most influential ones. Those
parameters require a special attention during the design and the
calibration processes of the robot. The robot prototype and the
experimental setup are described in Section 3. The models’
parameters measurement step with an uncertainty analysis and
the calibration process are respectively presented in Section 4 and
5. The last section demonstrates the capability of the robot to
perform desired trajectories and quantifies the accuracy using the
identified parameters.

2 3-DOF PLANAR PCR MODEL

To study Parallel Continuum Robots’ (PCR) accuracy, we
considered a high-grade repeatable robot illustrated in
Figure 1. This robot is composed of three planar kinematic
chains that are linked together to a rigid moving platform.
Contrary to classical 3-PRR mechanisms which inspired this
design, each chain is composed of a prismatic actuator and a
flexible rod that deforms continuously. The three flexible rods

transmit the actuators’ forces to the platform inducing its
motions. Using the traditional naming convention, the flexible
rod is denoted using the letter “F” and the resulting PCR design is
then a 3-PF robot.

Figure 2 illustrates the kinematic diagram of the 3-PF robot.
The actuation stages, through the prismatic joint values q1, q2, q3,
push and pull the rods to move the mobile platform. The rods are
slender beams capable of continuous and large deformations. The
movement of this mobile platform is restricted to planar
displacements (x, y translations and θ rotation).

A global work frame (W, xW , yW , zW) is defined with the zW
axis perpendicular to the robot’s base. A frame (P, xP, yP, zP) is
attached to the mobile platform. The three rods are clamped to
this platform at their distal ends (Bi, xBi, yBi, zBi). The proximal
ends of the rods clamped to the actuator are defined by the frames
(Ai, xAi, yAi, zAi).

In the following, we describe the model used to simulate the
quasi-static behavior of the robot. First, the model of a single rod
is detailed. Then, the three models of rods are linked together
thanks to the static equilibrium of the platform. All those
elements allow to implement the forward and the inverse
kinematic models of the robot.

2.1 Rod Model
The PCR’s model depends mainly on the modeling of the rods
and its correctness, that is why a Kirchhoff-rod-based model is
used. This model supposed that shear and extension can be
neglected. It is possible as the used slender elements have their
cross-section more than a hundred times smaller than their
lengths. The proposed structure remains in a plane so, only
the planar case of this model is considered without losing the
generality of the proposed approach which can also be adapted
for a spatial robot.

The curvilinear abscissa is represented by the scalar parameter
s ∈ [0, l] where l is the stress-free length of a rod. Along its arc
length, p(s) � [ x(s), y(s) ]T and θ(s) respectively define the
cross-section centroid position and orientation in the frame
attached to the proximal end of the rod. Figure 3 shows the
entire model of a limb.

All involved differential equations can be gathered into the
following system:

FIGURE 3 | Detailed scheme of the i-th limb with frames and parameters.
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(1)

Where nx(s), ny(s) are respectively the X and Y components of
the internal force n(s),m(s)m(s) is the internal moment, E is the
Young modulus of the rod material, and I is the second area
moment of the rod cross-section which depends on the rod’s
diameter d.

2.2 Forward and Inverse Kinematic Models
To model the quasi-static behavior of the PCR, a forward and
inverse kinematic models are created. Both result from a
numerical resolution of the previous equations considering the
rod’s boundary conditions and the static equilibrium of the
platform.

Those boundary conditions describe how the rods link the
actuators to the mobile platform. They yield:

WTP � WTAi · AiTBi · BiTP (2)

where WTAi depends on the joints coordinates qi, AiTBi

corresponds to the transformation resulting from the
integration of the rod’s equations BiTP is constant reflecting
the rigid-body conditions between the distal ends of the rods
and the mobile platform, and WTP depends on the desired
position such as:

WTP � ⎡⎢⎢⎢⎢⎢⎣ cosθ −sinθ x
sinθ cosθ y
0 0 1

⎤⎥⎥⎥⎥⎥⎦ (3)

To know the pose of the platform, the static equilibrium
conditions are considered:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑
i�1

3

[ni(li)] − fP � 0

∑
i�1

3 [pBi
× ni(li) +mi] − pP × fP −mP � 0

(4)

where fP , mP are the external force and moment applied on the
platform in the work frame, where ni, mi are the rods’ forces and
moments applied on the platform in the work frame, li is the
length of the rod i and pBi

and pP are the positions of Bi and p in
the work frame.

Due to the coupling between the rods, there is no analytical
solution of those equations considering the previous
boundary and equilibrium conditions, thus, a numeral
resolution is performed using a shooting method. This
shooting method is based on a optimization problem
where Eqs 2, 4 constitute its residual vector (Till and
Rucker, 2017; Mauzé et al., 2020).

2.3 Sensitivity Analysis of the Models’
Parameters
The PCR accuracy depends on the values of the model’s
parameters. To estimate the influence of the different
parameters, a sensitivity analysis is performed. It also allows
for identifying which parameters required more consideration.
There are three kinds of parameters: the intrinsic rod
parameters (the Young modulus E of its material, its
diameter d and its length l), the ones representing the poses
of the rods’ proximal and distal ends (respectively Axi,Ayi, αi
and Bxi,Byi, βi), and the parameters ci which represent the
misalignments between the directions of translations and the
rods’ orientation at the proximal ends.

The principle of the proposed sensitivity analysis is the
following. An arbitrary set of 26 joints configurations is
chosen in the center of the workspace. For each
configuration, partial derivatives of the platform position
considering the different parameters are numerically
computed using a finite difference method. The maximal
values of the partial derivatives among the configurations
and the different rods are gathered in Table 2. All parameters
are expressed in the SI base unit.

From the table results, three groups of parameters can be
defined considering their influence on the model. The first group
is composed of the Young modulus and the diameters of the rod.
The Young modulus has no influence on the pose of the platform.
It is the same observation for the diameter if the three parameters
are equal. This assumption can be considered as true if the
different rods are created from the same element. If one
diameter is different than the other, it introduces an
asymmetry and thus a small variation of the modeling. This
difference of behavior is only visible for the diameters. Indeed, if
all lengths (for example) are changed in the same time, the
consequences on the model will be more important than if
only one length was changed.

TABLE 2 | Influences of the different models’ parameters (expressed in SI base
unit) computed as the maximal finite difference for the different configurations
and rods.

Parameters maxi( ›x
›param) maxi( ›y

›param) maxi( ›θ
›param)

E 0 0 0
D 0 0 0
di 0.2 0.2 0.05×103
αi 1.3×10−3 1.3×10−3 0.4
βi 0.3×10−3 0.4×10−3 0.2
ci 0.3×10−3 0.3×10−3 0.1
li 1.5 1.3 0.4×103
Axi 1.3 1.2 0.4×103
Ayi 1.0 0.8 0.4×103
Bxi 1.3 1.2 0.4×103
Byi 1.0 0.8 0.4×103
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The second group is composed of the angular parameters αi, βi
and ci. The influence of the parameter αi is more important than
the one of the other angular parameters. It can be explained by its
role in the transmission of the actuator’s movement. To
understand the influence in terms of orientation, considering a
1 mrad uncertainty on a αi and the value of the table, the resulting
positioning error for the model is about 1.3 µm. If this value is
compared with a case-study of an uncertainty of 1 mrad made on
the orientation of a rigid bar of 30 mm, the estimation of the
position is about 30 μm at the bar’s end. So, it can be said that the
influences of those angular parameters are relatively small. The
elasticity, the deformation of the rod and the parallel structure
reduced their influence.

The last group is composed of the parameters that are the most
influential: the length of the rods li and their end positions
Axi,Ayi,Bxi,Byi. The differences between the direction X and Y
are essentially due to the asymmetry of the robot’s structure
which is induced by the initial orientation of the rods.

This sensitivity analysis give information about the influence
of the different parameters but also indicate the threshold of
uncertainty where their influence can not be neglected anymore.
To give an example of comparison between the parameters’
influence, considering the values of the table, an uncertainty of
1 mrad observed on a proximal end’s orientation αi has the same
influence of an uncertainty of 1 µm observed on the estimation of
the X coordinate of the proximal end position Axi.

In order to get an accurate robot, the parameters whose
influences are the most important on the model need to be
estimated as precisely as possible. The next section will present
the PCR design which takes into account the presented results by
introducing fiducial markers. The objective of those markers is to
reduce the measurement uncertainty of the most influential
parameters.

3 ROBOT DESIGN AND MEASUREMENT
SYSTEM

To validate the modeling of the robot, a prototype has been built
by taking into account the previous sensitivity analysis. To
perform this comparison between the prototype’s experimental
behavior and its model, the PCR poses and its models’ parameters
have been measured by two complementary vision measurement
systems. This section introduces the robot design and the
associated measurement system.

3.1 Robot Design
The robot is composed of a mobile platform coupled to three
actuated continuum limbs.

Each limb is assembled on a stack of three manual precision
stages, two translation stages (Newport SDS-40) and a rotation
stage (Newport M-RS40). These manual stages are used to adjust

FIGURE 4 | Scheme of the experimental setup with the several measurement vision systems.
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the position and the orientation of each actuator fixed
above them.

The actuators are SmarAct (SLC-1730-S-HV) positioning
stages. Their repeatability is below 30 nm and their range is
21 mm. Those actuators possess accurate optical sensors and a
repeatable behavior that are necessary to get accurate inputs for
the forward kinematic modeling of the PCR.

The rods are optical fibers stripped of their plastic part. Those
fibers are in fused silica whose Young Modulus E is about 69 GPa.
They are able to do large deformations without viscous effect
thanks to their elasticity. They are 125 µm in diameter and about
30 mm in length. Those rods are connected to the actuators and
to the platform by the mean of rod mounts.

The rod mounts are the key elements to define precisely the
position of the rods’ ends and thus their length. Each rodmount is
drilled on one side to clamp the rods. On the top face of the
mount, a fiducial marker (QR-Code-like pattern) is engraved.
Thanks to its manufacturing, the transformation between the
center of the fiducial marker and the hole where the rod are
inserted is known with a small uncertainty. Thus, knowing the
pose of the fiducial marker will enable to know the relative pose of
the proximal and the distal ends of the three rods (more details
will be given in the next section). The proximal rod mounts are
fixed on the actuators and the distal rod mounts are glued on the
mobile platform.

The platform is a 100 mm silicon wafer lifted by a 50 mm
diameter air bearing (S205001) from the IBS company. This air
bearing avoids friction and is preloaded to maintain a stable
elevation of the platform ( ± 5 µm). A manual linear stage
(Newport M-DS25-Z) allows to adjust the level of the air
bearing and to get the required planarity of the entire PCR.

3.2 Vision Setups
The knowledge of the initial configuration of the robot is
mandatory for an accurate simulation and position control of
the robot. For this purpose, two visionmeasurement systems have
been set up as shown in Figure 4.

The first one relies on the localization of fiducial markers
embedded on the rod mounts. The position of these fiducial
markers are tracked over a large field with a camera (IDS
UI3008CP-3) mounted with a 50 mm lens. This vision setup is
used to get accurate measurements of the different models’
parameters of the robot. More details will be given in the next
section.

The second vision measurement system is dedicated to the
measurement of the Cartesian pose of the platform with a very
high resolution. This system is composed of a camera with a
microscope tube, a x20 lens fromMitutoyo and a pseudo-periodic
pattern glued on the mobile platform of the PCR. This system is
able to measure the x, y position and the θ angle of the platform
with a sub-nanometer resolution (Andre et al., 2020). Both
cameras are supported by a robust gantry in order to
minimize mechanical noise.

4 PARAMETERS MEASUREMENT

After the PCR’s model is created, the PCR accuracy will depend
on the value of the model’s parameters. The closer the value of the
parameters will be, the higher will be the PCR’s accuracy. The
measurement of those parameters is an essential step. Specially
those whose influence, resulting from the sensitivity analysis, is
important. This section explains how nominal values and
measurement uncertainties are obtained in the aim to have an
accurate control of the robot.

The different parameters are related to the rods, the position of
the rods’ ends and the actuators’ direction of displacement. The
quantification of the uncertainty will define intervals which will
give more information about the potential modeling errors, and
help to identify the parameters during the calibration process.

FIGURE 5 | Detailed scheme of the misalignment between the rod
mount and the translation axis of the piezo stage.

FIGURE 6 | Flowchart of the parameter identification strategy.
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4.1 Rod Parameters
The diameter of the rods is measured thanks to a caliper which
has a measurement uncertainty of 20 µm. The length of the rods is
measured from images taken with the first vision setup. The
measurement uncertainty is estimated to three pixels.
Considering the pixel/meter ratio, this uncertainty is 126 µm.
Considering the uncertainties values and the results of the
sensitivity analysis, the rod diameters influence can be
neglected while the rod lengths need to be identified carefully.

4.2 Rod End Positions
The sensitivity analysis points out that the rod end positions are
influential parameters. Those positions depend on the rod
mounts position and the clamping conditions. All rod mounts
positions can be directly measured with the first vision setup and
a specific fiducial marker detection process. This algorithm gives
the Cartesian coordinates of all fiducial markers in the camera
frame. The six rod mounts can be differentiated thanks to missing
squares in each fiducial markers (coding principle). The
resolution of the measurement is less than 0.25 µm for X and
Y translations and 0.5 mrad for rotation.

As the transformation between the center of the fiducial
marker and the clamping hole is known, the Cartesian
position of the proximal end A and the distal end B of each
rod can be deduced from these markers poses. By construction,
the transformations between the center of the fiducial marker and
the clamping point of the rod are defined by two translations of
14 mm and 250 µm in the X and Y directions. The machining
accuracy is about 6% of this transformation leading to
uncertainties of respectively 840 and 15 µm. By acquiring an
image close to the rod mount and the clamping area and
considering the resulting pixel/meter ratio, the uncertainty in
the X direction is reduced to 160 µm. Due to the value of the
uncertainties and the influence of those parameters, they will
need a special cares during the PCR calibration process.

4.3 Actuator’s Direction of Displacement
The last parameters that need to be measured are assembling
defaults between the actuators and the rod mounts (Figure 5).
The angle of the stage axis in the work frame, γi, is measured
using 1 mm displacement of the stage with a step size of 125 µm.

Each pose of the pattern is recorded during this displacement.
The angle of the regression line through these points gives a
precise measurement of γi. Then, the difference between this
angle γi and the pattern pose provides the misalignment angle αi.
The uncertainty for both angles is estimated to 5 mrad.
Considering their small uncertainties, the parameters βi, ci will
be neglected and only the parameters αi will be considered.

Thanks to this measurement process, nominal values of the
different parameters and their uncertainties are known. This
knowledge is useful to prepare the calibration of the PCR.

5 ROBOT CALIBRATION

Even with an accurate measurement process, the addition of small
uncertainties reduces the PCR’s accuracy. To reduce those errors
and obtain a better fitting between the experimental behavior and
the model a calibration process has been implemented. In this
article, three identification steps are used in this calibration
process described in Figure 6. The principle of one
identification is illustrated in Figure 7. The new values of the
parameters are usually obtained thanks to a minimization of an
objective function. This section details the different considered
parameters, the definition of this objective function, the
identification strategy, the experimental results and the
obtained position and orientation errors.

5.1 Extrinsic and Intrinsic Parameters
There are two kinds of parameters considered for the
identification step of the calibration process: the intrinsic
parameters πr (defined in Table 2) which correspond to the
model’s parameters, and the external parameters which depend
on the measurement system (whose uncertainties are at the
nanometer level) used to get the pose of the PCR.

The experimental poses are acquired thanks to the second
vision setup as shown in Figure 4. They correspond to the 2D
poses of a frame attached to the pseudo-periodic pattern with
regards to the camera frame SeTM . These measured poses are used
to get the experimental Cartesian pose of the platform in the work
frame WTP as follows:

WTP � WTSe · SeTM · MTP (5)

The transformations WTSe and MTP respectively correspond to
the transformation between the work frame and the camera
frame, and to the transformation between the pseudo-periodic
pattern frame and the platform frame.WTSe and MTP are constant
but cannot be measured directly and must be identified. The six
corresponding extrinsic parameters are gathered in the vector
πext . The experimental pose WTP defined by X � [x, y, θ]T has to
be compared with those resulting from the simulation defined by
X̂ � [x̂, ŷ, θ̂]T .

5.2 Objective Function
The parameters identification is based on a minimization of an
objective function using a least squares algorithm. This algorithm
is defined by the sum of the squares of the differences between the

FIGURE 7 | Block diagram of the identification principle using the
Forward Kinematic Model. Considering a set of joints configuration Q, the
parameters π of the model are changed such as the residual of the objective
function Π is minimized.
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experimental Cartesian poses of the robot and the simulated ones
using the forward kinematic model. Both experimental and
simulation poses depend on a set of n joint coordinates Q �
[q1 . . . qn] where q j � [q1j, q2j, q3j]

T
is the j-th joint vector in the

set. Considering the measured and simulated poses which depend
on qj and π � [πr , πext]T , the vector of residuals is defined by
I � [I1 . . .In]T where Ij is:

Ij(π, qj) � [ αp(θ̂j − θj)(x̂j − xj)(ŷj − yj)] (6)

where α is a weighting factor. This factor has been chosen such as
the residuals in orientation and position were proportional to the
repeatability of the robot.

Using this function, the identification problem can be
formalized as:

minimize
π

ITI

subject to π ∈ [ lb, ub ] (7)

where, lb and ub are the lower and upper bound values of the
parameters, provided by the sensitivity analysis.

The minimization of this optimization problem is performed
using the built-in-function lsqnonlin from Matlab software.

5.3 Calibration Process
To increase the PCR’s accuracy, the parameters can be identified
after their measurements. This initial measurement of the
parameters enables the reduction of the parameters’
uncertainty intervals. Small intervals help to avoid some local
optima and ensure consistent parameters during the
minimization. Moreover, the sensitivity analysis helps to
distinguish the most influential parameters that should be
identified in priority. Indeed, the parameters could not be
identified at the same time if their values are too far from
their true values. For this reason, the identification is carried
out in three steps using the same experimental data.

The parameters that need to be identified first are the
extrinsic parameters πext . Indeed, those parameters cannot be
measured and have only been coarsely estimated. Then, after
setting the extrinsic parameters, the most influential robot’s
parameters can be identified in a second step. From the
analysis, those parameters are the length of the rods, the
orientation of the translation direction of the actuator and
the position of their ends. The two first steps aim at reducing
substantially the errors but the values of the parameters may
not be optimal yet, because some parameters could
compensate for the uncertainties of the others. In the last
step, all parameters are re-identified together, after the
identification of the most influential parameters. This final
optimization begins with an initial set of parameters that
assumed to be relatively closed to their true values.

5.4 Calibration Results
As previously explained, the joint coordinates have been chosen
inside the robot’s workspace in which it has a nanometer
repeatability. These joint coordinates are sent to the robot and
the Cartesian coordinates of the platform are recorded. To ensure
a good distribution in the available workspace, the joint
coordinates have been randomly chosen using a 3-dimensional
Poisson-disc sampling. A set of 99 joints coordinates, more than
three times the number of considered parameters, is created to
perform their identification. 56 joints coordinates are selected to
validate the identified parameters. Figure 8 presents the result of
the calibration process. With the warm-up cycle of the camera
and the actuators, the experimental measurement of the
calibration process lasts around 6 h. It shows the errors
between the platform positions and orientations simulated

FIGURE 8 | Positioning (A) and orientation (B) errors of the model
(respectively eP and eθ ) for the different samples of the calibration set of joints
coordinates. The dashed-lines are the mean values of positioning and
orientation errors and respectively correspond to 7.19 µm and 1.7 mrad.

TABLE 3 | Positioning and orientation errors (respectively eP and eθ ) with the nominal or the identified parameters and for the calibration or the validation configuration set.

eP (µm) eθ (mrad)
Max Mean min Max Mean min

Nominal model with calibration set 157.8 70.6 10.1 12.65 4.5 0.058
Identified model with calibration set 15.26 7.19 0.66 5.61 1.7 0.004
Identified model with validation set 13.88 5.5 1.5 5.57 1.5 0.10
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with the nominal model (model before calibration) and the model
after calibration using the experimental data.

The position error of the pose j is defined as the root mean
square of the difference between the simulated position (x̂j, ŷj)
and the experimental one (xj, yj) such as:

eP
j �

��������
(x̂j − xj)2

√
+ (ŷj − yj)2 (8)

Similarly, the orientation error is:

eθ
j �

��������(θ̂j − θj)2√
�
∣∣∣∣∣θ̂j − θj

∣∣∣∣∣ (9)

Table 3 reports the results of model errors before and after
calibration. After calibration, position error is included between 0.66
and 15.26 µm while the absolute orientation error is included
between 4 ×10−3 mrad and 5.61mrad. In order to better study
the influence of the error made on the values of the intrinsic
parameters πr , the extrinsic parameters πext have been identified
even for the nominal model (first step). It shows that the calibration

process allows to reduce the position error by a factor of 10 and the
orientation error by a factor of 13.

5.5 Forward Kinematic Model Validation
To check the validity of the identified forward kinematic model,
simulations are performed with a validation set of joints coordinates.
Figure 9 shows the obtained results. Position and absolute orientation
errors are respectively included between 1.5 and 13.88 µm and
between 0.1 and 5.57mrad. Those results, reported in Table 3,
have the same orders of magnitude as those for the calibration set.
The small reduction of the position errors is explained by a more
compact distribution of poses close to the center of the workspace. The
sources of these errors will be discussed in the last section.

For both sets, the maximal resulting position modeling error is
15.26 µm corresponding to 0.05% of the 30 mm length of the
flexible rods.

FIGURE 10 | Block diagram of the position control of the robot using the
Inverse Kinematic Model.

FIGURE 11 | Result of the robot position control for a square trajectory
(A) commanded poses (in red) and attained by the robot (in blue) (B) position
and (C) orientation accuracies obtained for the different poses. The horizontal
dashed-line is the mean value of the positioning accuracy which is
1.27 µm. The black dashed-lines are characteristic points (numbered points)
on the trajectories (corners of the square) which correspond to points where
the APP or APθ monotony change.

FIGURE 9 | Positioning (A) and orientation (B) errors of the model
(respectively eP and eθ ) for the different samples the validation set of joints
coordinates. The dashed-lines are the mean values of positioning and
orientation accuracy and respectively correspond to 5.5 µm and
1.5 mrad.
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6 ROBOT ACCURACY

This section presents the results of the proposed methodology
on the PCR’s accuracy. To quantify this accuracy, the robot is
controlled in the Cartesian space. This control depends on the
inverse kinematic model whose parameters resulted from the
calibration process.

6.1 Robot Control
The forward kinematic model enables the prediction of the pose
of the robot considering the joint coordinates as inputs.
Conversely, the inverse kinematic model allows to calculate
the joint coordinates corresponding to a given pose in the

Cartesian space. A regular scheme for controlling the position
of the robot in the Cartesian space using the inverse kinematic
model is implemented as illustrated in Figure 10. The parameters
of the inverse kinematic model are those that have been identified
for the forward kinematic model.

To validate the capability of the robot to reach commanded
poses in the Cartesian space, two trajectories have been
considered: a 2 mm side square and a 3 mm diameter circle
with a constant null orientation of the mobile platform. Those
trajectories are used as an input for the inverse kinematic model
which returns the corresponding joints coordinates Qc. Those
joints coordinates are sent to the robot and its poses are recorded
by the second vision setup (the one composed by a microscope).

Figures 11A, 12A show the desired trajectories (red points)
and the experimental trajectories (blue points). Both
positions and orientations obtained experimentally are
closed to the desired ones. The differences between them
are too small to be seen at the same time than the performed
trajectory. Those results show that the robot is capable of
following a defined trajectory.

6.2 Evaluation of the Robot Accuracy
The robot accuracy evaluates the closeness of agreement
between the pose attained by the robot and its
commanded pose. The accuracy of a robot is defined by
the standard ISO 9283:1998. The positioning accuracy is
the difference between the commanded position and the
barycenter of the reached positions:

APP �
����������������
(x − xc)2 + (y − yc)2√

(10)

The orientation accuracy is the difference between the
commanded angle and the average of the reached orientations:

APθ � (θ − θc) (11)

The bar operator (· ) is the barycenter (or the average) of the
reached positions (or orientations) after repeating the same pose
at least 30 times.

The accuracy of the robot has been evaluated for the two
trajectories as shown in Figures 11 (B–C), 12 (B–C). For
both cases, the means of positioning accuracy are below
2 µm (1.27 and 1.95 µm) and the worst positioning
accuracies are respectively 2.60 and 3.28 µm for the
square and circular trajectories. In orientation, the worst
orientation accuracy is inferior to 0.532 mrad. Table 4
reports all those results. The resulting mean positioning
accuracy is 10.9×10−3% of the nominal length of a flexible
continuum rod (around 30 mm). Considering the
performances of the other PCR gathered in Table 1, the
presented positioning accuracy is 10 times better than the
current relative positioning accuracy.

6.3 Discussion
For both trajectories (square and circle), the pose accuracies
depend on the pose of the platform. For instance, in the
square trajectory, the orientation accuracy is worst in the
corners. A deeper analysis on the experimental data

FIGURE 12 | Result of the robot position control for a circular trajectory
(A) commanded poses (in red) and attained with the prototype (in blue) (B)
position and (C) orientation accuracies obtained for the different poses. The
horizontal dashed-line is the mean value of the positioning accuracy
which is 1.95 µm. The black dashed-lines are characteristic points (numbered
points) on the trajectories where the APP or APθ monotony change.

TABLE 4 | Positioning and orientation accuracies (respectively APP and APθ ) of
the robot for two different trajectories.

APP (µm) |APθ | (mrad)

Max Mean min Max Mean Min

Square 2.60 1.27 0.47 0.437 0.20 0.032
Circle 3.28 1.95 0.28 0.532 0.24 0.046
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of the calibration process shows that the angular errors are linked,
with a correlation ratio of nearly one, to the differences between
the initial angle and the current angle. Larger the orientation of
the platform, higher is the angular error. Correlations between the
position and the angular error are less straightforward to establish
with typical ratios between 0.52 and 0.74. With local studies on
different areas of the workspace, there are some locations near the
workspace borders were the position errors are increased. In
conclusion, the model is more accurate in the middle of its
workspace in both orientation and position.

7 CONCLUSION

In this article, a methodology to reach micrometer positioning
accuracy is proposed.

This micrometer positioning accuracy was reached thanks to
the proposed methodology which consists in five key elements.
The first one is the use of a repeatable PCR structure to be able to
predict the robot’s quasi-static behavior. The second element is to
use a correct mechanical model. The third one is the use of
fiducial markers in the design of the robot. Those markers allow
to efficiently measure the nominal values of the model’s
parameters and to estimate their uncertainties. The fourth
element is to conduct a sensitivity analysis to quantify the
influence of the different parameters and find the most
influential ones. This crucial information is considered in the
robot design to be able to efficiently measure those parameters
thanks to fiducial markers. The last step is to calibrate the whole
robot by identifying all the parameters through three

optimization steps. Using this approach on a XYΘ planar
Parallel Continuum Robot (PCR), the maximal reached
positioning accuracy is 3.3 µm in position and 0.5 mrad in
orientation over a 10 mm-long circular trajectory.

In addition to the already recognized advantages of PCR
(miniaturization capabilities, lightweight, etc.), the obtained
results make also PCR worth to consider for high precision
positioning tasks.
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