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Compressive Sensing-Based Metrology for
Micropositioning Stages Characterization

Ning Tan1, Cédric Clévy1, Guillaume J. Laurent1 and Nicolas Chaillet1

Abstract—High accuracy is a necessary condition for reli-
able performance of MicroPositioning Stages (MPSs). However
there are various sources of errors that affect their precision.
Characterization is a prior step to calibration for compensating
systematic errors so as to improve the positioning accuracy.
In this letter, the Compressive Sensing (CS) theory is applied
to characterize system errors of MPSs. This method could
be flexibly collaborated with any sensors and applicable to
widespread micro-systems where the motions and errors are
required to be measured. CS (1) improves the data acquisition
and processing in terms of time, and (2) could be employed as an
interpolating strategy to efficiently replace the lookup tables. As
a case study, the CS-based method is applied to characterize the
position-dependent errors of an XY serial MPS. Experimental
results show that the method is able to retrieve the microscale
positions with largely shortened time and high precision. The
spent time for data acquisition and processing is shortened
by more than 84% for X stage and 82% for Y stage. These
results are especially promising for microscale purposes where
the system behavior is varying and difficult to characterize.

Index Terms—Micro/Nano Robots, Calibration and Identifi-
cation, Automation at Micro-Nano Scales, Computer Vision for
Other Robotic Applications

I. INTRODUCTION

SCALING down to microworld has brought many benefits
to technology development. Meanwhile, difficulties are

emerging due to the specificities at such a small scale. For
example, high operation accuracy is demanded in a variety of
microtasks [1], such as, microassembly [2], biological micro-
manipulation [3], micromachining [4], etc. Considering many
factors, such as success rate, speed, and contamination, these
tasks usually rely on MicroPositioning Stages (MPSs) with
automatic control instead of manual operation [5]. Microtask
platforms usually consist of one or several MPSs. The types,
structures, and numbers of the MPSs depend on the tasks to
be fulfilled.

Unfortunately, the inherent imperfections in off-the-shelf
MPSs could be of the noticeable issues for achieving mi-
crometer accuracies. Some manufacturers provide statistical
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specifications, for example the positioning repeatability and
sensor resolution. However, these data are not sufficient to
ensure a good accuracy of a micro end-effector attached to the
MPS because some of imperfections are position-dependent.
For instance, for a 20 mm long tip mounted on such a stage,
the positioning error could reach 3 µm at the end-point in
the perpendicular direction to the motion owing to the yaw
deviation. In addition, MPSs usually have limited Degrees-of-
Freedom (DoF). The assembly of several of them is required
to meet specific needs. Commonly, grippers or probes are also
fastened onto the stages as end-effector. These assemblies of
tools introduce some geometric errors further. For example, if
the perpendicularity error between two X and Y axes is 0.1◦,
a 1 cm motion along Y could result in a 17 µm error along X
which is significant at the microscale. To achieve a favourable
accuracy, assembly and position-dependent errors must be
measured, quantified, and compensated. However, the error
characterization of the MPS requires a stepsize down to a few
micrometers or even nanometers. Therefore, to characterize the
stroke of a MPS in centimeter range, a great amount of points
need to be measured and processed, which is a fairly time-
consuming procedure. Moreover, during long measurements,
the system’s behavior is subjected to environmental perturba-
tions, which induces a mix between the intrinsic performance
of the system itself and external influences. Thus it is very
difficult to really understand the intrinsic behavior because
accurate measurements usually take a long time. Our previous
works [6], [7] enabled to understand better the behavior of
micro and nano positionning robots and to improve a lot
their performance through robot calibration approach. They
also shown that measurement is the most critical issues where
the measurement duration is an important technical trade-off.
The long-term measurements (several hours are required to
have good enough data) are detrimental not only to usability,
but also to the performances themselves, which are brittle
to more influential effects and increase the risk of coupling
effects acting on the robot accuracy. Hence, it is of great
importance to reduce the measurement duration as well as
keeping the high quality of data. To shorten the implementing
(measuring + processing) time for measurements, in this
letter, compressive sensing is applied to characterize geometric
errors along the axes. The CS-based method can be flexibly
collaborated with any sensors and applicable to widespread
mechatronic systems where the motion and errors are need to
be measured. To showcase the method, an XY MPS formed
by two micropositioning stages is chosen as the case study
because such kind of structure is very popular in microscale
applications. In short, the two main contributions are:
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• The CS technique is applied to characterization of mi-
croscale motions and errors.

• The proposed CS-based framework is implemented to a
typical study case of serial MPSs, which contributes to
understand their behaviors.

The remainder of this letter is organized as follows. Section
II introduces the basic principle of CS and some related works.
Section III discusses the working mechanism of the proposed
characterization framework. The experimental setup and con-
cerned physical quantity of the case study are presented in
Section IV. Section V presents the characterization results and
corresponding discussions. Finally, the letter is concluded in
Section VI.

II. COMPRESSIVE SENSING AND RELATED WORK

A. Compressive sensing

Compressive sensing is a breakthrough signal processing
technique enabling to acquire and to recover a finite signal
from a set of random measurements, instead of high-density
measurements limited by the Nyquist rate, to carry out highly
accurate metrology [8], [9], [10]. This theory of sampling is
based on the fact that realworld signals typically have a sparse
representation in a certain transformed domain, which means
most physical phenomena are compressible in some transform
basis, e.g. Fourier Transform (FT), Discrete Cosine Transform
(DCT), wavelets, etc.

Given an unknown signal f = [f1, . . . , fn]T ∈ <n×1, it is
assumed that it can be represented as a linear combination of
certain basis functions by depicted as:

f = Ψθ, (1)

where Ψ = [ψ1, . . . ψn] ∈ <n×n is basis matrix and θ is
corresponding vector of coefficients. The basis functions must
be suited to a particular application. Most of the coefficients
θ are assumed to be effectively zeros (i.e., sparse) and have s
nonzero coefficients (i.e., s-sparse).

To recover the signal f , it takes m times linear measure-
ments to sample the original signal, which can be depicted by
the following formula:

h = Φf, (2)

where Φ = [φ1, . . . , φm]T ∈ <m×n is the measurement matrix
and h ∈ <m×1 is the measurement result vector. If m = n,
the original signal f could be reconstructed by directly solving
linear equations. CS concerns m� n which means to recover
the original signal using much fewer measurements.

Combining with Eq. 1, Eq. 2 can be rewritten as

h = ΦΨθ = Aθ, (3)

where A = ΦΨ. Eq. (3) is obviously an under-determined
equation. Normally it is impossible to find the unique solution
for this equation. However, if the Φ and Ψ are properly
designed and the original signal is sparse as well, f could be
successfully recovered if A satisfies the Restricted Isometry
Property (RIP) [8] which is a sufficient condition for sparse
solution. Usually, the RIP of a given matrix is difficult to
check, whereas it has been verified that random matrices

satisfy the RIP with high probability. Alternatively, the sparse
solution can also be ensured in terms of incoherence between
Φ and Ψ which is defined as

µ(Φ,Ψ) =
√
n · max

1≤i,j≤n
|〈φi, ψj〉|, (4)

To ensure the sparse solution, µ(Φ,Ψ) should be as small
as possible. It is known that random matrices are largely
incoherent with any fixed basis. And, spikes and sinusoids
are maximally incoherent [8]. Hence, in this paper we choose
Φ as a matrix of random binary (i.e. impulses) and Ψ as a
compression basis of sinusoids.

Then the sparse representation θ̂ can be obtained via the l1-
norm minimization readily by solving a convex optimization
problem through linear programming:

θ̂ = arg min ‖θ̂‖l1 s.t. Aθ̂ = h, (5)

where

‖θ̂‖l1 =
n∑

i=1

|θ̂i|.

Having the coefficients θ̂, the signal f can be recovered by
computing the following formula:

g = Ψθ̂ =

n∑
i=1

ψiθ̂i, (6)

where θ̂ = {θ̂i}ni=1 and g is the reconstructed version of f .

B. Literature review

Thanks to its merits and universality, the CS theory has been
applied to a variety of areas, especially to communication [11],
computational biology [12], medical imaging [13], remote
sensing [14], astronomy [15], and the like.

In addition, CS has been extended to some fields a little
bit far from conventional application areas. For example, CS
was applied to surface characterization and metrology [16].
In [17], authors addressed post-silicon characterization of the
unique gate delays and their timing distributions on each
manufactured IC by CS.

The CS technique has been applied to the micro-nano area.
In [18], a system including a micro-mirror array acquired
only a fraction of the samples by projecting subsets of image
pixels onto a prism. Unfortunately, the sampling was not
ideal for CS due to practical limitations, and the sensed
signal did not necessarily meet the strict sparsity demand-
s. A compressive feedbacks based non-vector space control
approach was proposed for improving the accuracy of AFM
based nanomanipulations. Instead of sensors, the local image
was used as the feedback to a nonvector space controller to
generate a closed-loop control for manipulation [19].

The CS theory has also been introduced to robotics where
most of them are correlated to environmental mapping where
the robots acted as the mobile agents to collect local informa-
tion [20], [21]. For example, the mission design strategies for
mobile robots whose task was to perform spatial sampling of
a static environmental field were considered in the framework
of CS [22]. Besides, an unpublished work [23] presented
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a lightweight method for spatial sampling of environmental
phenomenon using a large group of robots. Data were gathered
using simple random walks and the field was reconstructed
using CS. In [24], the CS technique was applied to make robot
know its position and construct the environment map with
minimal sensing information. A person detection and tracking
method was proposed for a mobile robot by fusing the data
from Radio Frequency Identification (RFID) and stereo camera
which was used for person detection based on the CS theory.
Less Haar-like features were extracted from the compressive
domain to represent the person by a sparse measurement
matrix [25].

To the best of our knowledge, CS has not been applied for
the positioning errors metrology and characterization in real
robotic systems, especially in MPSs.

III. CS-BASED GEOMETRIC ERRORS CHARACTERIZATION

As mentioned in Section I, in the cases of requiring large
amount data, the data processing time is really a tough
problem, and this is always the case in micro-nano areas.
Because the characterization of errors of the MPS required
the stepsize down to a few micrometers or even nanometers,
to characterize the stroke of the MPS in centimeter range, a
great amount of points need to be measured and processed,
which is a fairly time-consuming procedure.

Inspired by the essential merit of compressive sensing
introduced in Section II, a novel characterization method
is proposed through combining the position sensor and CS
theory. The architecture of the framework is illustrated in Fig.
1 and the general procedure is as follows:

• Step 1: To recover the error function f ∈ <n×1, a
measurement matrix Φ ∈ <m×n is designed to sample
m random positions. The measurement matrix should be
not only random but also realistic and practical. Since
the error function here is a kind of 1D spacial signal,
the most convenient way is to randomly measure a few
positions. The positions of measurements are determined
by generating a random permutation. The chosen points
of the random positions are set as “1” and stored in
Φ. The rest points are set as “0” meaning that the
coordinates of such points won’t be taken. Since all the
chosen points are on the straight line, the characterization
trajectories are designed to easily follow these points
without the need of particular trajectory planning. The
random positions are sorted and stored in sequence. For
example, suppose the m measured positions are at 2nd,
5th, . . ., (n− 1)th instants, the measurement matrix is

Φ =


0 1 0 0 0 · · · 0 0
0 0 0 0 1 · · · 0 0

. . .
...

0 0 0 0 0 · · · 1 0


︸ ︷︷ ︸

n

m
.

Such a randomly generated binary matrix is incoherent to
the DCT transform matrix. That is to say, there is a lack
of correlation between the sensing modality embodied by

the rows of Φ and the basis formed by the columns of Ψ
[8], [9], [26].

• Step 2: The MPS is controlled to move to the random
positions given prior. Meanwhile, the corresponding po-
sitions are measured by the external position sensor and
stored in the memory for the follow-up use. It is worth
noting that the position sensor here is not of a specific
kind but could be any ones adequate for the applications.

• Step 3: After finishing the data acquisition and pro-
cessing, the coordinates of random positions, pm =
[pm,2, pm,5, . . . , pm,n−1], can be retrieved.

• Step 4: Then the corresponding errors h at the random
positions can be obtained through calculating h = pt−pm
where pt = [pt,2, pt,5, . . . , pt,n−1] is the target coordi-
nates.

• Step 5: The defined Ψ, the designed Φ, and the measured
h are proceeded to solve the l1-norm minimization prob-
lem in (5), and then the sparse transform θ̂ is obtained.
The matrix A becomes

A =


Ψ2,1 Ψ2,2 · · · Ψ2,n

Ψ5,1 Ψ5,2 · · · Ψ5,n

...
...

...
...

Ψn−1,1 Ψn−1,2 · · · Ψn−1,n

 .
• Step 6: The total errors of the axis are recovered through

calculating g = Ψθ̂ as the reconstruction of f .
• Step 7: Go back to Step 1 and repeat the process until

finishing the characterization of all the axes.
It is worth noting that the position sensor could be whatever
fitting for specific applications. The Ψ should be also con-
gruent with the physical quantity to be measured. For finite
signals, the FT and DCT are two commonly used transforms.
The FT implicitly assumes a periodic extension of the signal,
which results in discontinuity at the boundary [27]. The DCT
assumes an antisymmetric extension of the signal, which
results in continuous boundaries. Hence, the DCT is chosen
in our case study.

Moreover, the framework could mantle a wide range of
applications. For example, the framework could be extended
to measure and characterize other physical quantities. For that,
the corresponding sensors, measurement matrices, and sparse
transforms should be adapted to the specific applications.

IV. CASE STUDY

The position-dependent errors along axes are significant
characteristics of precise positioning stages. These errors are
due to the geometric nature of the axes. For macroscale
robotics, this type of errors is usually neglected in calibration
which mainly focuses on kinematic parameters identification
or elastic deformation. However, these errors become signifi-
cant at the microscale, especially in Cartesian MPSs.

The mobile stages of many MPSs are guided based on
friction principles. Their positioning performances depend on
the qualities of fabrication, plays, weight of the axes and so
on. The stages are usually equipped with internal sensors and
are individually closed-loop controlled in actuation layer. But
depending of the location of the sensors in the actuation chain,
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Fig. 1. Architecture of the MPS error characterization based on CS.

the feedback control can not reject some sources of errors.
Moreover, stages assembly errors can not be compensated
using only proprioceptive sensors.

A. Experimental setup

In this letter, an XY serial MPS is chosen as a case study
of the proposed characterization method because this kind of
structure is representative for many systems commonly used
in performing micromanipulation. The pictures of the whole
experimental setup is shown in Fig. 2(a) where the system
is mounted on a anti-vibration table. The two translation
stages are PI M-111.1DG equipped with MercuryTM C-863
controllers. Table I gives the specifications of the translation
stages XY according to the datasheets.

The external measuring system for characterization consists
of a 1024×768 video camera (AVT STINGRAY F-125C),
a microscope lens (Optem zoom 70XL), an objective with
10× magnification and a Pseudo-Periodic encoded Pattern
(PPP) (Fig. 2(b)). The upper goniometer (M-GON40-U) and
lower goniometer (M-GON40-L) are used for adjusting the
parallelism between the pattern and the camera.

TABLE I
SPECIFICATIONS OF XY TRANSLATION STAGES IN DATASHEET

Stage PI M-111.1DG

Travel range 15 mm
Resolution 50 nm
Unidirectional repeatability 100 nm
Pitch angle deviation ±150 µrad
Yaw angle deviation ±150 µrad
Backlash 2 µm
Thread pitch 0.4 mm
Driving mechanism Leadscrew

B. External measuring system

The PPP algorithm [28] is suitable for microscale mea-
surement because its high resolution and long ranges in the
two directions of the image plane. Hence, it is chosen with
the vision system as the sensing tool for microscale position
measurement in the case study. The PPP algorithm is based
on an encryption of a binary code over a PPP. The position is
retrieved by combining fine and coarse measurements that are
complementary. First, the coding allows absolute but coarse
coordinate transformations of the image reference frame into

actual positions on the observed part of the pattern. Image
processing returns the line and column orders necessary for the
fine position through phase computations. Second, the PPP al-
lows a high level of interpolation through phase measurements
that lead to subpixel resolution. This process gives the position
with typical resolution of 10−3 pixels and an indeterminacy
equal to the wavelength of the pattern.

As the period of the pattern is precisely known (4 µm
in the present case), the measurement is intrinsically self-
calibrated. Then there is no need to calibrate the imaging
system. In the present case, the sensing range of the measuring
system is limited by the size of the pattern that is 9.5 mm
in x-axis and 4.2 mm in y-axis. The reproducibility of the
visual measurement has been experimentally evaluated and is
better than 10 nm. More details about the algorithm and the
fabrication of the pattern can be found in [29].

C. Position-dependent errors

According to the specification, the driving mechanism of
the stage is leadscrew. So the errors along the axis could be
foreseen somehow based on the mechanical properties. The er-
ror curves are functions of axis coordinates, and the functions
are different from one axis to another, so measurements of
these errors for every axis are necessary. As depicted in Fig. 3,
each stage is controlled to reach appointed target coordinates
{pxt, pyt}. The camera captures the images of the pattern
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Fig. 3. Block diagram of position-dependent errors characterization.

in the real positions {pxr, pyr}. The images are processed
subsequently with the PPP algorithm so as to obtain measured
coordinates {pxm, pym}. The position-dependent errors are
calculated by comparing the measured positions (estimation
of real positions) with the targeted positions (positions to be
reached). The error at a given point contains two parts: the
first part induced by X stage’s motion and the second part by
Y stage’s motion. To decouple the two parts, the trajectories
for error characterization are designed as 1-DoF straight lines,
that is, one stage is moving, while another stage is kept static.
The error components are defined as efxi and efyi when
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(a) Global view (b) Local view

Fig. 2. Experimental setup of the XY serial MPS for case study.

moving forward in i direction and are defined as ebxi and
ebyi when moving backward. As long as these components
are characterized, the error at any point in the workspace is
known [28].

V. EXPERIMENTAL VALIDATION AND DISCUSSIONS

A. Full data characterization

Firstly the full data of position-dependent errors are mea-
sured by using the PPP method. Fig. 4 shows the differences
between pxt and pxm, namely the errors of efxx. It can be
seen that errors vary cyclically. Such behavior is reasonably
assumed due to systematic turn-to-turn nature inherent in
the leadscrew. The thread pitch of the stage is 400 µm, so
the cyclical error repeats with the same period. It can also
be observed that the periods of the errors in forward and
backward motions of the X stage are the same, but the magni-
tudes are slightly different. The driving system does not work
symmetrically and makes a systematic error between forward
and backward motions that corresponds to the backlash of
2 µm as specified by the manufacturer. Moreover, position-
dependent errors appear not only in the driving direction
but also in the lateral one. Fig. 5 shows the coupling errors
in y direction when only X stage is moving forwards and
backwards. It is seen that the coupling errors have the same
period as the errors of driving direction. In the strokes of 9500
and 4200 µm, the position measurements are taken with step
size of 5 µm, and a total of 3801 data from X stage and 1681
data from Y stage are obtained for every cycle including a
forward and a backward motion.

B. Characterization based on CS

The following results are on the outcomes of applying
the CS-based framework. The corresponding signal f is the
position-dependent errors to be characterized. The 300 random
measurements used for recovering the original f are showed
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Fig. 4. Full data of errors efxx (or pxt−pxm) in x direction when X stage
is moving forwards and backwards in one cycle.
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Fig. 5. Full data of coupling errors efxy (or 0− pym) in y direction when
X stage is moving forwards and backwards in one cycle.

with the original in Fig. 6 (a). Fig. 6 (b) shows the comparison
of original and recovered position-dependent errors of x-axis,
from which the two curves can be seen quite close (i.e.,
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overlapped). This result preliminarily proves that the CS-based
framework is able to recover the errors efficiently with very
few measurements (i.e., 300) compared to the total number of
original data (i.e., 1901).
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Fig. 6. Errors efxx (i.e., f or pxt − pxm) in x direction with 300 random
measurements when X stage is moving forwards. (a) Random samples (i.e.,
y) and the original (i.e., f ); (b) Recovered errors (i.e., g) and the original.

Fig. 7 gives the DCT transform coefficients of the original
errors in normal order and random order as well for enhanced
visibility. It is showed that most of the dots are (or nearly)
zeros which means the original errors are sparse in this
domain. The differences between the original errors and the
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Fig. 7. Sparse coefficient vector θ̂ of errors in x direction when X stage
is moving forwards (arranged in normal and random orders for enhanced
visibility).

recovered ones are shown in Fig. 8 in terms of four sets of
random measurements, namely 100, 300, 600, and 900. Using
measurements of 100 random points, the recovery errors are
about -2 ∼ 3 µm which are not satisfactory at this small scale.
Increasing the number to 300 gives a much better recovery

TABLE II
MEAN ABSOLUTE VALUES, MAXIMUM ABSOLUTE VALUES AND

STANDARD DEVIATIONS OF THE RECOVERY ERRORS (g − f ) IN x
DIRECTION WHEN X STAGE IS MOVING FORWARDS

Percentage of measurements (%) 5.26 15.78 31.56 47.34

Mean absolute error (µm) 0.512 0.198 0.092 0.047
Maximum absolute error (µm) 3.088 1.186 0.650 0.560

Standard deviation (µm) 0.655 0.270 0.141 0.085

with errors of ± 1 µm. By doubling (to 600) and tripling (to
900) the number of measurements, the improved performances
of recovery are able to be achieved further. As observed in the
figure, the improved errors are within ± 0.25 µm which are
small enough for many applications. All these numbers are less
than half data (i.e., 1901) which means that the measurement
burden can be slashed markedly. From the zoom region, it
can be observed that the recovery of the unmeasured errors is
quite good rather than using the interpolation techniques and
the lookup table in conventional handling. Table II provides
the corresponding mean absolute values, maximum absolute
values and standard deviations of the recovery errors. It is
observed that the three sets of values decrease a lot where
for example, standard deviation decreases from 0.65 µm to
0.25 µm when the number of measurements is tripled. With
less than half data, the standard deviation declines to small
than 0.1 µm. Besides, the coupling errors in y direction
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Fig. 8. Recovery precisions (g − f ) in x direction when X stage is moving
forwards.

can also be reconstructed efficiently as demonstrated in Fig.
9. The CS-based method not only guarantees high quality
of reconstruction of the position-dependent errors, but also
reduce the time consumption efficiently. Table III presents
the comparisons of time consumption between the full scan
and the CS-based method in data acquisition and processing
processes. The 600 and 300 random measurements in one
cycle are used for recovery of errors along X and Y stages,
respectively. Thanks to the CS-based method, the spent time of
data acquisition and processing is shortened by 84.23% for X
stage and 84.18% for Y stage. So the original time (more than
11.5 hours) decreases to less than 2 hours. Since the number
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of the full data in Y stage is less than half of data in X
stage, half random measurements are acquired to reconstruct
the position-dependent errors. In this case, more than 5 hours
spent fall sharply to less than 1 hour.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

−2

−1

0

1

2

3

4

Coordinates of x−axis (µm)

E
rr

or
s 

in
 y

 d
ire

ct
io

n 
( µm

)

 

 
Original
Recovery

Fig. 9. Recovery of coupling errors efxy (or 0 − pym) with 300 random
measurements in y direction when X stage is moving forwards.

VI. CONCLUSIONS

In this letter, a novel characterization framework based on
CS was proposed. This methodology has several advantages:
1) The CS-based method decreases the required measurements
in data acquisition process, thereby shortens the time needed
for data processing. 2) Because the CS can retrieve positioning
errors at the positions not measured, this framework could
be employed as an interpolating strategy to efficiently replace
the lookup table conventionally used. 3) The framework is
flexible to collaborate with any position sensors. 4) The
framework is extendable to measure and characterize other
physical quantities at the micro-nano scale in collaboration
with other kinds of sensors.

As a showcase, the position-dependent errors in the XY se-
rial MPS were characterized by using the proposed framework.
Experimental results illustrated that the recovered position-
dependent errors were fit to the original ones with fitting
errors within ± 1 µm or even ± 0.25 µm by increasing the
number of measurements. These results verified the efficiency
of the proposed method in terms of precision and interpolating
capability. Furthermore, the time consumed in data acquisition
and processing processes was enormously cut down by nearly
84 % for X stage and 82 % for Y stage, which verified
the efficiency of the proposed method in terms of speed. The
future work would be the calibration of MPSs based on the
characterized errors.
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