Publications

This page presents a selection of my publications ordered by topics. See the publications list for an exhaustive view.

Vision for microrobotics

High Resolution Vision-based Pose Estimation

  1. S. Cuenat, J. E. B. Carcaño, P. Sandoz, R. Couturier, G. J. Laurent, and M. Jacquot, “Computer microvision-based precision motion measurement by digital holographic microscopy and deep transformer neural networks,” in Proc. of the SPIE OPTO, AI and Optical Data Sciences IV, 2023, vol. PC12438, p. PC124380N.
  2. J. E. B. Carcaño et al., “Digital holographic microscopy applied to 3D computer microvision by using deep neural networks,” in Proc. of the EPJ Web of Conferences, 2023, vol. 287, p. 13011.
  3. A. N. André, P. Sandoz, M. Jacquot, and G. J. Laurent, “Pose Measurement at Small Scale by Spectral Analysis of Periodic Patterns,” International Journal of Computer Vision, vol. 130, no. 6, pp. 1566–1582, 2022.
  4. L. Andréoli et al., “Extended autofocusing capabilities in digital holographic microscopy with transformer neural networks,” in Proc. of the SPIE Photonics Europe, Unconventional Optical Imaging III, 2022, p. PC1213616.
  5. L. Andréoli et al., “Extended machine vision-control capabilities using digital holography and transformer neural networks,” in Proc. of the SPIE Photonics West, AI and Optical Data Sciences III, 2022, p. PC1201903.
  6. S. Cuenat et al., “Fast autofocusing using tiny transformer networks for digital holographic microscopy,” Optics Express, vol. 30, no. 14, pp. 24730–24746, 2022.
  7. A. N. André, P. Sandoz, M. Jacquot, and G. J. Laurent, “Robust, precise and scalable: A phase-encoded pattern for visual X, Y, Θpositioning,” in Proc. of the IEEE Int. Conf. on Manipulation, Automation and Robotics at Small Scales (MARSS), 2020, pp. 1–5.
  8. A. N. André, P. Sandoz, B. Mauzé, M. Jacquot, and G. J. Laurent, “Sensing One Nanometer over Ten Centimeters: A Micro-Encoded Target for Visual In-Plane Position Measurement,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 3, pp. 1193–1201, 2020.
  9. A. N. André, P. Sandoz, B. Mauzé, M. Jacquot, and G. J. Laurent, “Robust phase-based decoding for absolute (X, Y, Θ) positioning by vision,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–12, 2020.
  10. B. Mauzé, R. Dahmouche, C. Clévy, P. Sandoz, F. Hennebelle, and G. J. Laurent, “Visual Measurements at Small Scales: Guidelines to Reduce Uncertainties down to a Few Nanometers,” in Proc. of the IEEE Int. Conf. on Manipulation, Automation and Robotics at Small Scales (MARSS), 2020, pp. 1–6.
  11. P. Sandoz et al., “Enlarging computer-vision sensing-capabilities using pseudo-periodic patterns,” in Latin America Optics and Photonics Conference (Optical Society of America), 2018.
  12. M. Asmad Vergara, M. Jacquot, G. J. Laurent, and P. Sandoz, “Digital Holography as Computer Vision Position Sensor with an Extended Range of Working Distances,” Sensors, vol. 18, no. 7, 2018.
  13. V. Guelpa et al., “3D-printed vision-based micro-force sensor dedicated to in situ SEM measurements,” in Proc. of the IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, 2017, pp. 424–429.
  14. V. Guelpa, P. Sandoz, M. Asmad Vergara, C. Clévy, N. Le Fort-Piat, and G. J. Laurent, “2D visual micro-position measurement based on intertwined twin-scale patterns,” Sensors and Actuators A: Physical, vol. 248, pp. 272–280, 2016.
  15. V. Guelpa, P. Sandoz, C. Clévy, N. Le Fort-Piat, and G. J. Laurent, “Pattern-based vision for microrobotic manipulators calibration and servoing,” in International Conference on Ubiquitous Robots and Ambient Intelligence, 2016, pp. 308–310.
  16. V. Guelpa, G. J. Laurent, B. Tamadazte, P. Sandoz, N. Le Fort-Piat, and C. Clévy, “Single frequency-based visual servoing for microrobotics applications,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2016, pp. 4274–4279.
  17. M. Asmad Vergara, M. Jacquot, G. J. Laurent, and P. Sandoz, “In-plane position and orientation measurement of a mobile target by digital holography,” in Proc. of the Latin America Optics and Photonics Conference (Optical Society of America), 2016.
  18. V. Guelpa, G. J. Laurent, P. Sandoz, J. Galeano Zea, and C. Clévy, “Subpixelic Measurement of Large 1D Displacements: Principle, Processing Algorithms, Performances and Software,” Sensors, vol. 14, no. 3, pp. 5056–5073, 2014.
  19. J. Galeano Zea, P. Sandoz, G. J. Laurent, L. Lopes Lemos, and C. Clévy, “Twin-scale Vernier Micro-pattern for Visual Measurement of 1-D in-plane Absolute Displacements with Increased Range-to-Resolution Ratio,” International Journal of Optomechatronics, vol. 7, no. 3, pp. 222–234, 2013.

Vision-based Microrobot Control

  1. A. N. André et al., “Automating Robotic Micro-Assembly of Fluidic Chips and Single Fiber Compression Tests Based-on ΘVisual Measurement With High-Precision Fiducial Markers,” IEEE Transactions on Automation Science and Engineering, vol. 21, no. 1, pp. 353–366, 2022.
  2. M. Ourak, B. Tamadazte, G. J. Laurent, and N. Andreff, “Geometric Calibration of an OCT Imaging System,” in Proc. of the IEEE Int. Conf. on Robotics and Automation, 2018, pp. 3993–3999.
  3. Y. Baran, K. Rabenorosoa, G. J. Laurent, P. Rougeot, N. Andreff, and B. Tamadazte, “Preliminary Results on OCT-based Position Control of a Concentric Tube Robot,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2017, pp. 3000–3005.
  4. M. Ourak, A. De Simone, B. Tamadazte, G. J. Laurent, A. Menciassi, and N. Andreff, “Automated in-plane OCT-probe positioning towards repetitive optical biopsies,” in Proc. of the IEEE Int. Conf. on Robotics and Automation, 2016, pp. 4186–4191.
  5. A. Kudryavtsev, G. J. Laurent, C. Clévy, B. Tamadazte, and P. Lutz, “Analysis of CAD Model-based Visual Tracking for Microassembly using a New Block Set for MATLAB/Simulink.,” International Journal of Optomechatronics, vol. 9, no. 4, pp. 295–309, 2015.
  6. I. A. Ivan, M. Ardeleanu, and G. J. Laurent, “High Dynamics and Precision Optical Measurement Using a Position Sensitive Detector (PSD) in Reflection-Mode: Application to 2D Object Tracking over a Smart Surface,” Sensors, vol. 12, no. 12, pp. 16771–16784, 2012.

Vision-based Microforce Measurement

  1. M. Diezinger, B. Tamadazte, and G. J. Laurent, “TriRod: A 3-RF Continuum Parallel Robot for Shape-Based Load Estimation,” IEEE Robotics and Automation Letters, vol. 8, no. 11, pp. 7265–7272, 2023.
  2. M. A. Diezinger, B. Tamadazte, and G. J. Laurent, “3D Curvature-Based Tip Load Estimation for Continuum Robots,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10526–10533, 2022.
  3. B. Tiwari et al., “A High Range-to-Resolution Multiaxis \muForce and Torque Sensing Platform,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 4, pp. 1837–1845, 2021.
  4. V. Placet et al., “Transverse compressive properties of natural fibers determined using micro mechatronic systems and 2D full-field measurements,” in Materials Today: Proceedings of the 4th Int. Conf. on Natural Fibers (ICNF 2019), Porto, Portugal, 2020.
  5. V. Guelpa, G. J. Laurent, P. Sandoz, and C. Clévy, “Vision-Based Microforce Measurement with a Large Range-to-Resolution Ratio using a Twin-Scale Pattern,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 6, pp. 3148–3156, 2015.

Microrobotics

Continuum Microrobots

  1. C. Nwafor, G. J. Laurent, and K. Rabenorosoa, “Miniature Parallel Continuum Robot Made of Glass: Analysis, Design, and Proof-of-Concept,” IEEE/ASME Transactions on Mechatronics, vol. 28, no. 4, pp. 2038–2046, 2023.
  2. C. J. Nwafor, C. Girerd, G. J. Laurent, T. K. Morimoto, and K. Rabenorosoa, “Design and Fabrication of Concentric Tube Robots: A Survey,” IEEE Transactions on Robotics, vol. 39, no. 4, pp. 2510–2528, 2023.
  3. C. J. Nwafor, G. J. Laurent, P. Rougeot, and K. Rabenorosoa, “The Caturo: A Submillimeter Diameter Glass Concentric Tube Robot with High Curvature,” Advanced Intelligent Systems, vol. 5, no. 2, p. 2200308, 2023.
  4. O. F. Gallardo, B. Mauzé, R. Dahmouche, C. Duriez, and G. J. Laurent, “Turning an Articulated 3-PPSR Manipulator into a Parallel Continuum Robot,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2021, pp. 4955–4960.
  5. B. Mauzé, G. J. Laurent, R. Dahmouche, and C. Clévy, “Micrometer Positioning Accuracy With a Planar Parallel Continuum Robot,” Frontiers in Robotics and AI, vol. 8, pp. 1–13, 2021.
  6. B. Mauzé et al., “Nanometer Precision With a Planar Parallel Continuum Robot,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 3806–3813, 2020.

Parallel Microrobots

  1. M. Leveziel, W. Haouas, G. J. Laurent, M. Gauthier, and R. Dahmouche, “MiGriBot: A miniature parallel robot with integrated gripping for high-throughput micromanipulation,” Science Robotics, vol. 7, no. 69, p. eabn4292, 2022.
  2. M. Leveziel, G. J. Laurent, W. Haouas, M. Gauthier, and R. Dahmouche, “A 4-DoF parallel robot with a built-in gripper for waste sorting,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9834–9841, 2022.
  3. W. Haouas, G. J. Laurent, S. Thibaud, and R. Dahmouche, “Kinematics, Design and Experimental Validation of a Novel Parallel Robot for Two-Fingered Dexterous Manipulation,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2019, pp. 6763–6768.
  4. W. Haouas, R. Dahmouche, N. Le Fort-Piat, and G. J. Laurent, “A New Seven Degrees-of-Freedom Parallel Robot With a Foldable Platform,” Journal of Mechanisms and Robotics, vol. 10, no. 4, 2018.
  5. W. Haouas, R. Dahmouche, and G. J. Laurent, “Analysis of an Integrated 4-DoF Parallel Wrist for Dexterous Gripping,” in Proc. of the IEEE Int. Conf. on Automation Science and Engineering, 2018, pp. 1448–1453.
  6. G. Laurent, R. Dahmouche, W. Haouas, and N. Piat, “Parallel robotic wrist with four degrees of freedom,” no. WO2018/065734, Apr. 2018.
  7. W. Haouas, R. Dahmouche, J. Agnus, N. Le Fort-Piat, and G. J. Laurent, “New integrated silicon-PDMS process for compliant micro-mechanisms,” Journal of Micromechanics and Microengineering, vol. 27, no. 12, 2017.
  8. W. Haouas, R. Dahmouche, N. Le Fort-Piat, and G. J. Laurent, “4-DoF spherical parallel wrist with embedded grasping capability for minimally invasive surgery,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2016, pp. 2363–2368.

Micromanipulation and Microassembly

  1. C. Clévy et al., “In-situ Versatile Characterization of Carbon NanoTubes using Nanorobotics,” in Proc. of the IEEE Int. Conf. on Manipulation, Automation and Robotics at Small Scales (MARSS), 2019, pp. 1–6.
  2. B. Komati et al., “Automated robotic microassembly of flexible optical components,” in Proc. of the IEEE International Symposium on Assembly and Manufacturing (ISAM), 2016, pp. 93–98.
  3. A. V. Kudryavtsev, G. J. Laurent, C. Clévy, B. Tamadazte, and P. Lutz, “Stereovision-based control for automated MOEMS assembly,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2015, pp. 1391–1396.

Microrobots Calibration

  1. N. Tan, C. Clévy, G. J. Laurent, and N. Chaillet, “Compressive Sensing-Based Metrology for Micropositioning Stages Characterization,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 638–645, 2016.
  2. N. Tan, C. Clévy, G. J. Laurent, P. Sandoz, and N. Chaillet, “Accuracy Quantification and Improvement of Serial Micropositioning Robots for In-Plane Motions,” IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1497–1507, Dec. 2015.
  3. N. Tan, C. Clévy, G. J. Laurent, P. Sandoz, and N. Chaillet, “Characterization and Compensation of XY Micropositioning Robots using Vision and Pseudo-Periodic Encoded Patterns,” in Proc. of the IEEE Int. Conf. on Robotics and Automation, Hong Kong, China, 2014, pp. 2819–2824.
  4. N. Tan, C. Clévy, G. J. Laurent, and N. Chaillet, “Calibration and Validation of XYT Micropositioners with Vision,” in Proc. of the IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, 2012, pp. 256–261.

Untethered and Mobile Microrobots

  1. B. Ahmad, M. Gauthier, G. J. Laurent, and A. Bolopion, “Mobile Microrobots for In Vitro Biomedical Applications: A Survey,” IEEE Transactions on Robotics, pp. 1–18, 2021.
  2. B. Piranda, G. J. Laurent, J. Bourgeois, C. Clévy, S. Möbes, and N. Le Fort-Piat, “A new concept of planar self-reconfigurable modular robot for conveying microparts,” IFAC Mechatronics, vol. 23, no. 7, pp. 906–915, 2013.
  3. S. Möbes, B. Piranda, G. J. Laurent, J. Bourgeois, C. Clévy, and N. Le Fort-Piat, “Toward a 2D Modular and Self-Reconfigurable Robot for Conveying Microparts,” in Proc. of the IEEE dMEMS Workshop on Design, Control and Software Implementation for Distributed MEMS, 2012, pp. 7–13.
  4. G. Laurent and E. Piat, “Efficiency of Swimming Microrobots using Ionic Polymer Metal Composite Actuators,” in Proc. of the IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, 2001, pp. 3914–3919.

Distributed Manipulation with Air Flow

  1. V. Guelpa, G. J. Laurent, B. Dahroug, and N. Le Fort-Piat, “Modular Contact-Free Conveyors for Handling Planar Fragile Objects,” IEEE Transactions on Robotics, vol. 33, no. 1, pp. 92–101, 2016.
  2. B. Dahroug, G. J. Laurent, V. Guelpa, and N. Le Fort-Piat, “Design, modeling and control of a modular contactless wafer handling system,” in Proc. of the IEEE Int. Conf. on Robotics and Automation, 2015, pp. 976–981.
  3. G. J. Laurent and H. Moon, “A survey of non-prehensile pneumatic manipulation surfaces: principles, models and control,” Intelligent Service Robotics, vol. 8, no. 3, pp. 151–163, 2015.
  4. G. J. Laurent, A. Delettre, R. Zeggari, R. Yahiaoui, J.-F. Manceau, and N. Le Fort-Piat, “Micropositioning and Fast Transport Using a Contactless Micro-Conveyor,” Micromachines, vol. 5, no. 1, pp. 66–80, 2014.
  5. J. Agnus et al., “Robotic microassembly and micromanipulation at FEMTO-ST,” Journal of Micro-Bio Robotics, vol. 8, pp. 91–106, 2013.
  6. A. Delettre, G. J. Laurent, N. Le Fort-Piat, and C. Varnier, “3-DoF potential air flow manipulation by inverse modeling control,” in Proc. of the IEEE Int. Conf. on Automation Science and Engineering, 2012, pp. 926–931.
  7. A. Delettre, G. J. Laurent, Y. Haddab, and N. Le Fort-Piat, “Robust control of a planar manipulator for flexible and contactless handling,” IFAC Mechatronics, vol. 22, no. 6, pp. 852–861, 2012.
  8. A. Delettre, G. J. Laurent, and N. Le Fort-Piat, “2-DoF Contactless Distributed Manipulation Using Superposition of Induced Air Flows,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2011, pp. 5121–5126.
  9. G. J. Laurent, A. Delettre, and N. Le Fort-Piat, “A new aerodynamic traction principle for handling products on an air cushion,” IEEE Transactions on Robotics, vol. 27, no. 2, pp. 379–384, 2011.
  10. K. Boutoustous, G. J. Laurent, E. Dedu, L. Matignon, J. Bourgeois, and N. Le Fort-Piat, “Distributed control architecture for smart surfaces,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2010, pp. 2018–2024.
  11. A. Delettre, G. J. Laurent, and N. Le Fort-Piat, “A new contactless conveyor system for handling clean and delicate products using induced air flows,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2010, pp. 2351–2356.
  12. L. Matignon, G. J. Laurent, N. Le Fort-Piat, and Y.-A. Chapuis, “Designing decentralized controllers for distributed-air-jet MEMS-based micromanipulators by reinforcement learning,” Journal of Intelligent and Robotic Systems, vol. 59, no. 2, pp. 145–166, 2010.
  13. L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Design of semi-decentralized control laws for distributed-air-jet micromanipulators by reinforcement learning,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2009, pp. 3277–3283.

Decentralized Reinforcement Learning

  1. L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Independent Reinforcement Learners In Cooperative Markov Games: A Survey Regarding Coordination Problems,” The Knowledge Engineering Review, vol. 27, pp. 1–31, 2012.
  2. G. J. Laurent, L. Matignon, and N. Le Fort-Piat, “The World of Independent Learners is not Markovian,” Innovation in Knowledge-Based & Intelligent Engineering Systems, vol. 15, no. 1, pp. 55–64, 2011.
  3. L. Matignon, G. J. Laurent, N. Le Fort-Piat, and Y.-A. Chapuis, “Designing decentralized controllers for distributed-air-jet MEMS-based micromanipulators by reinforcement learning,” Journal of Intelligent and Robotic Systems, vol. 59, no. 2, pp. 145–166, 2010.
  4. L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Design of semi-decentralized control laws for distributed-air-jet micromanipulators by reinforcement learning,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2009, pp. 3277–3283.
  5. L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Hysteretic Q-Learning : an algorithm for Decentralized Reinforcement Learning in Cooperative Multi-Agent Teams,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, San Diego, CA, USA, 2007, pp. 64–69.

On-Line learning

  1. G. Laurent, “On-Line Learning for Micro-Object Manipulation,” in Markov Decision Processes in Artificial Intelligence, O. Sigaud and O. Buffet, Eds. Wiley-ISTE, 2010.
  2. L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Improving Reinforcement Learning Speed for Robot Control,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Beijing, China, 2006, pp. 3172–3177.
  3. L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Reward Function and Initial Values: Better Choices for Accelerated Goal-Directed Reinforcement Learning,” in Proc. of the Int. Conf. on Artificial Neural Networks, 2006, vol. 4131, pp. 840–849.
  4. C. Adda, G. J. Laurent, and N. Le Fort-Piat, “Learning to control a real micropositioning system in the STM-Q framework,” in Proc. of the IEEE Int. Conf. on Robotics and Automation, Barcelone, Spain, 2005, pp. 4580–4585.
  5. G. J. Laurent and E. Piat, “Learning Mixed Behaviours with Parallel Q-learning,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Lausanne, Switzerland, 2002, vol. 1, pp. 1002–1007.
  6. G. Laurent and E. Piat, “Parallel Q-Learning for a block-pushing problem,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Maui, USA, 2001, vol. 1, pp. 286–291.

Publications in French

  1. F. Amiot et al., “Détermination des propriétés mécaniques transverses de fibres par compression diamétrale et mesures de champs de déplacement,” in 24ème Congrès Français de Mécanique, Brest, France, 2019, p. 3.
  2. G. Laurent, “Mise en pratique de LSPI pour la commande linéaire quadratique adaptative d’une surface de manipulation à coussin d’air actif,” in Journées Francophones sur la Planification, la Décision et l’Apprentissage pour la conduite de systèmes, Besançon, 2010.
  3. Y. Haddab, B. Lang, and G. Laurent, “Matlab/Simulink pour l’analyse et la commande de systèmes,” Techniques de l’ingénieur, vol. TIB394DUO, no. s7460, pp. 1–16, 2010.
  4. L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “SOaN: un algorithme pour la coordination d’agents apprenants et non communicants,” in Journées Francophones sur la Planification, la Décision et l’Apprentissage pour la conduite de systèmes, Paris, 2009, pp. 115–121.
  5. G. Laurent, “Apprentissage en ligne de la manipulation de micro-objets,” in Processus décisionnels de Markov en intelligence artificielle : volume 1, principes généraux et applications, O. Buffet and O. Sigaud, Eds. Hermès Science Publications, 2008, pp. 221–232.
  6. L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Un algorithme décentralisé d’apprentissage par renforcement multi-agents coopératifs : le Q-Learning Hystérétique,” in Journées Francophones sur la Planification, la Décision et l’Apprentissage pour la conduite de systèmes, Grenoble, 2007, pp. 115–121.
  7. G. J. Laurent and E. Piat, “Apprentissage par renforcement dans le cadre des processus décisionnels de Markov factorisés observables dans le désordre,” Revue d’Intelligence Artificielle, vol. 20, pp. 275–309, 2006.
  8. L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Choix de la fonction de renforcement et des valeurs initiales pour accélérer les problèmes d’apprentissage par renforcement de plus court chemin stochastique,” in Journées Francophones sur la Planification, la Décision et l’Apprentissage pour la conduite de systèmes, Toulouse, 2006, pp. 107–114.
  9. G. J. Laurent and E. Piat, “Conception et modélisation d’un microrobot nageur,” Journal Européen des Systèmes Automatisés, vol. 37, no. 1, pp. 31–48, 2003.
  10. G. J. Laurent and E. Piat, “Dyna-Q Parallèle,” in Journées Nationales sur les Processus Décisionnels de Markov et l’Intelligence Artificielle, Caen, 2003.
  11. G. Laurent and E. Piat, “Commande de micromanipulateurs plans par apprentissage par renforcement,” in 14èmes Journées des Jeunes Chercheurs en Robotique, Evry, 2001, pp. 20–25.

PhD Manuscripts (in French)

  1. M. Diezinger, “Estimation de forces par vision dans les robots continus,” PhD thesis, Université de Bourgogne Franche-Comté, 2023.
  2. C. Nwafor, “Contribution to the Miniaturization of Continuum Robots by Using Glass,” PhD thesis, Université Bourgogne Franche-Comté, 2023.
  3. M. Leveziel, “Conception, modélisation et commande de robots parallèles à articulations souples pour la micromanipulation à haute cadence,” PhD thesis, Université Bourgogne Franche-Comté, 2022.
  4. A. N. André, “Mesure visuelle robuste à grands rapports plage sur résolution de la pose 3D de mires périodiques codées : applications à la microrobotique,” PhD thesis, Université Bourgogne Franche-Comté, 2021.
  5. B. Mauzé, “Triskèle-Bot : Étude et développement d’un robot parallèle continu pour le micro-positionnement,” PhD thesis, Université Bourgogne Franche-Comté, 2021.
  6. W. Haouas, “Étude et développement de robots parallèles à plateformes configurables pour la micromanipulation dextre,” PhD thesis, Université Bourgogne Franche-Comté, 2018.
  7. V. Guelpa, “Etalonnage et commande de microrobots par mesure visuelle sub-pixellique et multi- directionnelle,” PhD thesis, Université Bourgogne Franche-Comté, 2017.
  8. A. Delettre, “Conception, modélisation et commande d’une surface de manipulation sans contact à flux d’air induit,” PhD thesis, Université de Franche-Comté, 2011.
  9. L. Matignon, “Synthèse d’agents adaptatifs et coopératifs par apprentissage par renforcement. Application à la commande d’un système distribué de micromanipulation,” PhD thesis, Université de Franche-Comté, Besançon, 2008.
  10. G. Laurent, “Synthèse de comportements par apprentissages par renforcement parallèles : application à la commande d’un micromanipulateur plan,” Thèse de doctorat, Université de Franche-Comté, Besançon, France, 2002.

© 2019. All rights reserved.

Powered by Hydejack v8.4.0